Showing 20 articles starting at article 1141

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Biochemistry, Engineering: Biometric

Return to the site home page

Chemistry: Biochemistry Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geology
Published

'Rock stars' solve long-standing diamond conundrum      (via sciencedaily.com) 

Two researchers have used a standard laptop computer and a humble piece of rock -- from the 'waste pile' of a diamond mine -- to solve a long-held geological conundrum about how diamonds formed in the deep roots of the earth's ancient continents.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Molecular teamwork makes the organic dream work      (via sciencedaily.com) 

Molecular engineers have triggered a domino-like structural transition in an organic semiconductor. The energy- and time-saving phenomenon may enhance the performance of smartwatches, solar cells, and other organic electronics.

Engineering: Biometric
Published

Study highlights complicated relationship between AI and law enforcement      (via sciencedaily.com) 

A recent study that examined the relationship between artificial intelligence (AI) and law enforcement underscores both the need for law enforcement agencies to be involved in the development of public policies regarding AI -- such as regulations governing autonomous vehicles -- and the need for law enforcement officers to better understand the limitations and ethical challenges of AI technologies.

Chemistry: Biochemistry Chemistry: General Energy: Nuclear Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Nitrate can release uranium into groundwater      (via sciencedaily.com) 

A team has experimentally confirmed that nitrate, a compound common in fertilizers and animal waste, can help transport naturally occurring uranium from the underground to groundwater. The new research backs a previous study showing that aquifers contaminated with high levels of nitrate -- including the High Plains Aquifer residing beneath Nebraska -- also contain uranium concentrations far exceeding a threshold set by the Environmental Protection Agency. Uranium concentrations above that EPA threshold have been shown to cause kidney damage in humans, especially when regularly consumed via drinking water.

Chemistry: Biochemistry Physics: General Physics: Quantum Physics
Published

New possibilities in the theoretical prediction of particle interactions      (via sciencedaily.com) 

A team of scientists finds a way to evaluate highly complex Feynman integrals.

Chemistry: Biochemistry
Published

Gigapixel 3D microscope captures life in unprecedented detail      (via sciencedaily.com) 

Researchers have developed a new type of microscope that stitches together video from 54 individual cameras and lenses. Whether recording high-speed, 3D, gigapixel movies of the behavior of dozens of freely swimming zebrafish or the grooming activity of fruit flies at near cellular-level detail across a very wide field of view, the device is opening new possibilities to researchers the world over.

Biology: General Chemistry: Biochemistry Chemistry: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Recycling: Researchers separate cotton from polyester in blended fabric      (via sciencedaily.com) 

Researchers found they could separate blended cotton and polyester fabric using enzymes -- nature's tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric's component materials, thereby reducing textile waste.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

'Fishing' for biomarkers      (via sciencedaily.com) 

Researchers have devised a tiny, nano-sized sensor capable of detecting protein biomarkers in a sample at single-molecule precision. Fittingly coined as 'hook and bait,' a tiny protein binder fuses to a small hole created in the membrane of a cell -- known as a nanopore ­-- which allows ionic solution to flow through it. When the sensor recognizes a targeted molecule, the ionic flow changes. This change in flow serves as the signal from the sensor that the biomarker has been found.

Chemistry: Biochemistry Energy: Alternative Fuels Energy: Technology Environmental: Water Geoscience: Environmental Issues
Published

'Green' hydrogen: How photoelectrochemical water splitting may become competitive      (via sciencedaily.com) 

Sunlight can be used to produce green hydrogen directly from water in photoelectrochemical (PEC) cells. So far, most systems based on this 'direct approach' have not been energetically competitive. However, the balance changes as soon as some of the hydrogen in such PEC cells is used in-situ for a catalytic hydrogenation reaction, resulting in the co-production of chemicals used in the chemical and pharmaceutical industries. The energy payback time of photoelectrochemical 'green' hydrogen production can be reduced dramatically, the study shows.

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists open door to manipulating 'quantum light'      (via sciencedaily.com) 

How light interacts with matter has always fired the imagination. Now scientists for the first time have demonstrated the ability to manipulate single and double atoms exhibiting the properties of simulated light emission. This creates prospects for advances in photonic quantum computing and low-intensity medical imaging.

Chemistry: Biochemistry
Published

Researchers identify key source of T cell 'exhaustion'      (via sciencedaily.com) 

Scientists show the commanding role of a specialized group of proteins in the nuclei of our cells, called mSWI/SNF (or BAF) complexes, both in activating T cells to attack cancer and triggering exhaustion. The discovery suggests that targeting certain of these complexes, either by gene-cutting technologies such as CRISPR or with targeted drugs, could reduce T cell exhaustion and give CAR T cells (and in general, all tumor-fighting T cells) the staying power to take on cancer.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Nanotechnology could treat lymphedema      (via sciencedaily.com) 

When lymphatic vessels fail, typically their ability to pump out the fluid is compromised. Researchers have now developed a new treatment using nanoparticles that can repair lymphatic vessel pumping. Traditionally, researchers in the field have tried to regrow lymphatic vessels, but repairing the pumping action is a unique approach.

Chemistry: Biochemistry
Published

Transfer-tattoo-like cell-sheet delivery for wounds      (via sciencedaily.com) 

A research team develops transfer-tattoo-like cell-sheet delivery induced by interfacial cell migration.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Graphene Engineering: Nanotechnology Engineering: Robotics Research
Published

Mind-control robots a reality?      (via sciencedaily.com) 

Researchers have developed biosensor technology that will allow you to operate devices, such as robots and machines, solely through thought control.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Can synthetic polymers replace the body's natural proteins?      (via sciencedaily.com) 

Scientists developing new biomaterials often try to mimic the body's natural proteins, but a chemist shows that simpler polymers -- based on a handful of plastic building blocks -- also work well. Using AI, her team was able to design polymer mixtures that replicate simple protein functions within biological fluids. The random heteropolymers dissolve and stabilize proteins and can support cells' normal protein-making machinery. The technique could speed the design of materials for biomedical applications.

Chemistry: Biochemistry
Published

Harnessing incoherence to make sense of real-world networks      (via sciencedaily.com) 

A new way of describing the connections in real-world systems such as food webs or social networks could lead to better methods for predicting and controlling them.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene
Published

Another crystalline layer on crystal surface as a precursor of crystal-to-crystal transition      (via sciencedaily.com) 

Ice surfaces have a thin layer of water below its melting temperature of 0 degrees Celsius. Such premelting phenomenon is important for skating and snowflake growth. Similarly, liquid often crystallizes into a thin layer of crystal on a flat substrate before reaching its freezing temperature, i.e. prefreezing. The thickness of the surface layer usually increases and diverges as approaching the phase transition (such as melting and freezing) temperature. Besides premelting and prefreezing, whether similar surface phenomenon exists as a precursor of a phase transition has rarely been explored. Scientists now propose that a polymorphic crystalline layer may form on a crystal surface before the crystal-crystal phase transition and names it pre-solid-solid transition.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Protein engineers navigate toward more targeted therapeutics      (via sciencedaily.com) 

Researchers uncovered the role of the third intracellular loop in the G protein-coupled receptors' signaling mechanism, which could lead to a more targeted approach to drug discovery and a paradigm shift for new therapeutics.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: Water Geoscience: Geochemistry
Published

New approach to harvesting aerial humidity with organic crystals      (via sciencedaily.com) 

Researchers have reported a novel method of harvesting water from naturally occurring sources such as fog and dew.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Modelling superfast processes in organic solar cell material      (via sciencedaily.com) 

In organic solar cells, carbon-based polymers convert light into charges that are passed to an acceptor. Scientists have now calculated how this happens by combining molecular dynamics simulations with quantum calculations and have provided theoretical insights to interpret experimental data.