Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Engineering: Graphene
Published You can leave your gloves on: New material burns viruses, safe for skin


A new material that packs deadly heat for viruses on its outer surface while staying cool on the reverse side could be used to make sustainable, multiuse personal protective equipment.
Published Grasping entropy: Teachers and students investigate thermodynamics through a hands-on model


Though a cornerstone of thermodynamics, entropy remains one of the most vexing concepts to teach budding physicists in the classroom. Physics teachers designed a hand-held model to demonstrate the concept of entropy for students. Using everyday materials, the approach allows students to confront the topic with new intuition -- one that takes specific aim at the confusion between entropy and disorder.
Published Deriving the fundamental limit of heat current in quantum mechanical many-particle systems


Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.
Published Efficient and mild: Recycling of used lithium-ion batteries


Lithium-ion batteries (LIBs) provide our portable devices like tablets and mobiles -- and increasingly also vehicles -- with power. As the share of volatile renewable energy needing electricity storage increases, more and more LIBs are needed, lithium prices rise, resources dwindle, and the amount of depleted batteries that contain toxic substances increases. Researchers introduce a novel approach for the recovery of lithium from used LIBs.
Published Striking gold with molecular mystery solution for potential clean energy


Hydrogen spillover is exactly what it sounds like. Small metal nanoparticles anchored on a thermally stable oxide, like silica, comprise a major class of catalysts, which are substances used to accelerate chemical reactions without being consumed themselves. The catalytic reaction usually occurs on the reactive -- and expensive -- metal, but on some catalysts, hydrogen atom-like equivalents literally spill from the metal to the oxide. These hydrogen-on-oxide species are called 'hydrogen spillover.'
Published A new way to capture and recycle carbon dioxide from industrial emissions


Carbon capture is a promising method to help slow climate change. With this approach, carbon dioxide (CO¬¬2) is trapped before it escapes into the atmosphere, but the process requires a large amount of energy and equipment. Now, researchers have designed a capture system using an electrochemical cell that can easily grab and release CO2. The device operates at room temperature and requires less energy than conventional, amine-based carbon-capture systems.
Published Hotter quantum systems can cool faster than initially colder equivalents


The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.
Published Graphene: Perfection is futile


It has long been known that graphene has excellent electronic properties. However, it was unclear until now how stable these properties are. Are they destroyed by disturbances and additional effects, which are unavoidable in practice, or do they remain intact? Scientists have now succeeded in developing a comprehensive computer model of realistic graphene structures. It turned out that the desired effects are very stable. Even graphene pieces that are not quite perfect can be used well for technological applications.
Published Golden rules for building atomic blocks


Physicists have developed a technique to precisely control the alignment of supermoiré lattices by using a set of golden rules, paving the way for the advancement of next generation moiré quantum matter.
Published New quantum device generates single photons and encodes information


A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A team stacked two different, atomically thin materials to realize this chiral quantum light source.
Published New study finds ways to suppress lithium plating in automotive batteries for faster charging electric vehicles


A new study has found a way to prevent lithium plating in electric vehicle batteries, which could lead to faster charging times.
Published Graphene discovery could help generate hydrogen cheaply and sustainably


Researchers have finally solved the long-standing puzzle of why graphene is so much more permeable to protons than expected by theory.
Published Steam condenser coating could save 460M tons of CO2 annually


If coal and natural gas power generation were 2% more efficient, then, every year, there could be 460 million fewer tons of carbon dioxide released and 2 trillion fewer gallons of water used. A recent innovation to the steam cycle used in fossil fuel power generation could achieve this.
Published Clever coating turns lampshades into indoor air purifiers


Indoor air pollution may have met its match. Scientists have designed catalyst-coated lampshades that transform indoor air pollutants into harmless compounds. The lampshades work with halogen and incandescent light bulbs, and the team is extending the technology so it will also be compatible with LEDs.
Published Carbon-based quantum technology


Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.
Published Human scent receptors could help 'sniff out' nerve gases in new sensor


By some estimates, the human nose can detect up to a trillion different smells with its hundreds of scent receptors. But even just catching a quick whiff of certain chemicals known as nerve agents can be lethal, even in tiny amounts. Researchers have now developed a sensitive and selective nerve gas sensor using these human scent receptors. It reliably detected a substitute for deadly sarin gas in simulated tests.
Published Single drop of ethanol to revolutionize nanosensor manufacture


Engineers have developed a breakthrough technique to make the processing of nanosensors cheaper, greener and more effective by using a single drop of ethanol to replace heat processing of nanoparticle networks, allowing a wider range of materials to be used to make these sensors.
Published Thermal imaging innovation allows AI to see through pitch darkness like broad daylight


Engineers have developed HADAR, or heat-assisted detection and ranging.
Published How heat treatment affects a milk alternative made from rice and coconut water


Whether they're made from soybeans, almonds, oats, or just sourced straight from the cow, milk products must go through heat treatment to prevent harmful bacterial growth and keep them safe. But understanding how these processes affect new, plant-based milk formulations could make the beverages more pleasant to drink as well. Researchers have discovered how pasteurization and sterilization affects the look and feel of one such drink made from coconut and rice.
Published Way cool: 'freeze ray' technology


An unusual discovery is now being developed as an on-demand cooling solution for high-flying military electronics.