Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Energy: Alternative Fuels, Engineering: Graphene
Published Quantum films on plastic



Researchers have discovered that thin films of elemental bismuth exhibit the so-called non-linear Hall effect, which could be applied in technologies for the controlled use of terahertz high-frequency signals on electronic chips. Bismuth combines several advantageous properties not found in other systems to date, as the team reports. Particularly: the quantum effect is observed at room temperature. The thin-layer films can be applied even on plastic substrates and could therefore be suitable for modern high-frequency technology applications.
Published New study unveils scalable and efficient photoelectrode modules for green hydrogen production



A recent study has achieved a remarkable technological breakthrough in the production of green hydrogen.
Published Researchers use Hawk supercomputer and lean into imperfection to improve solar cell efficiency



Solar energy is one of the most promising, widely adopted renewable energy sources, but the solar cells that convert light into electricity remains a challenge. Scientists have turned to the High-Performance Computing Center Stuttgart to understand how strategically designing imperfections in the system could lead to more efficient energy conversion.
Published What will it take for China to reach carbon neutrality by 2060?



To become carbon neutral by 2060, China will have to build eight to 10 times more wind and solar power installations than existed in 2022, according to a new study. Reaching carbon neutrality will also require major construction of transmission lines.
Published New world record for CIGS solar cells



A new record for electrical energy generation from CIGS solar cells has been reached. Scientists have achieved a 23.64 percent efficiency.
Published Graphene research: Numerous products, no acute dangers found by study



Graphene is an enormously promising material. It consists of a single layer of carbon atoms arranged in a honeycomb pattern and has extraordinary properties: exceptional mechanical strength, flexibility, transparency and outstanding thermal and electrical conductivity. If the already two-dimensional material is spatially restricted even more, for example into a narrow ribbon, controllable quantum effects can be created. This could enable a wide range of applications, from vehicle construction and energy storage to quantum computing.
Published New evidence shows UK solar parks can provide for bees and butterflies



A new study shows that UK solar parks, if managed correctly, can provide vital resources to help stem the decline in the nation's bees and butterflies. The new research provides peer-reviewed field data of insect pollinators at solar parks in the UK, covering 15 sites.
Published Revolutionary breakthrough in solar energy: Most efficient QD solar cells



A research team has unveiled a novel ligand exchange technique that enables the synthesis of organic cation-based perovskite quantum dots (PQDs), ensuring exceptional stability while suppressing internal defects in the photoactive layer of solar cells.
Published Electrons become fractions of themselves in graphene



Physicists have observed fractional quantum Hall effect in simple pentalayer graphene. The finding could make it easier to develop more robust quantum computers.
Published Scientists invent ultra-thin, minimally-invasive pacemaker controlled by light



A team of researchers has developed a wireless device, powered by light, that can be implanted to regulate cardiovascular or neural activity in the body. The feather-light membranes, thinner than a human hair, can be inserted with minimally invasive surgery and contain no moving parts.
Published Physicists develop more efficient solar cell



Physicists have used complex computer simulations to develop a new design for significantly more efficient solar cells than previously available. A thin layer of organic material, known as tetracene, is responsible for the increase in efficiency.
Published New non-toxic method for producing high-quality graphene oxide



Researchers have found a new way to synthesize graphene oxide which has significantly fewer defects compared to materials produced by most common method. Similarly good graphene oxide could be synthesized previously only using rather dangerous method involving extremely toxic fuming nitric acid.
Published Fresh meat: New biosensor accurately and efficiently determines meat freshness



Despite the technological advances keeping meat fresh for as long as possible, certain aging processes are unavoidable. Adenosine triphosphate is a molecule produced by breathing and responsible for providing energy to cells. When an animal stops breathing, ATP synthesis also stops, and the existing molecules decompose into acid, diminishing first flavor and then safety. Hypoxanthine and xanthine are intermediate steps in this transition. Assessing their prevalence in meat indicates its freshness.
Published Electrification or hydrogen? Both have distinct roles in the European energy transition



A key step to achieving climate neutrality in the European Union is to rapidly shift from fossil fuels to electric technologies powered by renewable energies, a new study shows. At the same time, hydrogen produced from electricity will also be indispensable in hard-to-electrify sectors such as aviation, shipping and chemicals. By 2050, electrification and hydrogen are the key strategies to reach climate neutrality based on renewable power.
Published First human trial shows 'wonder' material can be developed safely



A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests.
Published Two-dimensional waveguides discovered



Scientists announce the discovery of slab waveguides based on the two-dimensional material hexagonal boron nitride.
Published Sensors made from 'frozen smoke' can detect toxic formaldehyde in homes and offices



Researchers have developed a sensor made from 'frozen smoke' that uses artificial intelligence techniques to detect formaldehyde in real time at concentrations as low as eight parts per billion, far beyond the sensitivity of most indoor air quality sensors.
Published Towards A Better Way of Releasing Hydrogen Stored in Hydrogen Boride Sheets



Hydrogen stored in hydrogen boride sheets can be efficiently released electrochemically, report scientists. Through a series of experiments, they demonstrated that dispersing these sheets in an organic solvent and applying a small voltage is enough to release all the stored hydrogen efficiently. These findings suggest hydrogen boride sheets could soon become a safe and convenient way to store and transport hydrogen, which is a cleaner and more sustainable fuel.
Published New adhesive tape picks up and sticks down 2D materials as easily as child's play



A research team has developed a tape that can be used to stick two-dimensional (2D) materials to many different surfaces, in an easy and user-friendly way. Their finding will aid research into and boost production of 2D materials for next-generation devices.
Published Greenhouse gas repurposed



Cutting-edge research converted waste carbon dioxide into a potential precursor for chemicals and carbon-free fuel.