Showing 20 articles starting at article 341

< Previous 20 articles        Next 20 articles >

Categories: Energy: Batteries, Engineering: Graphene

Return to the site home page

Energy: Alternative Fuels Engineering: Graphene
Published

Novel carrier doping in p-type semiconductors enhances photovoltaic device performance by increasing hole concentration      (via sciencedaily.com) 

The carrier concentration and conductivity in p-type monovalent copper semiconductors can be significantly enhanced by adding alkali metal impurities. Doping with isovalent and larger-sized alkali metal ions effectively increased the free charge carrier concentration, and the mechanism was unraveled by their theoretical calculations. Their carrier doping technology enables high carrier concentration and high mobility p-type thin films to be prepared from the solution process, with photovoltaic device applications.

Engineering: Graphene
Published

Making mini-magnets      (via sciencedaily.com) 

Researchers demonstrated a topological insulator device that opens the way towards observing the quantum anomalous Hall effect. Because the currents generated are resistant to scattering, but very sensitive to applied magnetic fields, they may be used for reducing power consumption in computing applications.

Engineering: Graphene
Published

Researchers devise tunable conducting edge      (via sciencedaily.com) 

Physicists have demonstrated a new magnetized state in a monolayer of tungsten ditelluride. This material of one-atom thickness has an insulating interior but a conducting edge, which has important implications for controlling electron flow in nanodevices.

Energy: Batteries
Published

High-accuracy electric vehicle battery monitoring with diamond quantum sensors for driving range extension      (via sciencedaily.com) 

The issue of battery usage inefficiency in electric vehicles resulting from an inaccurate battery charge measurement may finally get resolved, thanks to a diamond quantum sensor prototype. The sensor can measure currents in a wide range as well as detect milliampere-level currents in a noisy environment, improving the detection accuracy from 10% to within 1%.

Energy: Batteries
Published

Robo-bug: A rechargeable, remote-control cyborg cockroach      (via sciencedaily.com) 

Researchers have engineered a system for creating remote controlled cyborg cockroaches, equipped with a tiny wireless control module that is powered by a rechargeable battery attached to a solar cell. This achievement will help make the use of cyborg insects a practical reality.

Energy: Alternative Fuels Energy: Batteries
Published

A sustainable battery with a biodegradable electrolyte made from crab shells      (via sciencedaily.com) 

Accelerating demand for renewable energy and electric vehicles is sparking a high demand for the batteries that store generated energy and power engines. But the batteries behind these sustainability solutions aren't always sustainable themselves. Scientists have now create a zinc battery with a biodegradable electrolyte from an unexpected source -- crab shells.

Energy: Batteries
Published

A new concept for low-cost batteries      (via sciencedaily.com)     Original source 

Engineers have designed a battery made from inexpensive, abundant materials, that could provide low-cost backup storage for renewable energy sources. Less expensive than lithium-ion battery technology, the new architecture uses aluminum and sulfur as its two electrode materials with a molten salt electrolyte in between.

Energy: Batteries
Published

New stable quantum batteries can reliably store energy into electromagnetic fields      (via sciencedaily.com)     Original source 

Researchers have proposed that the micromasers can serve as excellent model for future quantum batteries.

Energy: Nuclear Engineering: Graphene
Published

The electron slow motion: Ion physics on the femtosecond scale      (via sciencedaily.com) 

How do different materials react to the impact of ions? This is a question that plays an important role in many areas of research -- for example in nuclear fusion research, when the walls of the fusion reactor are bombarded by high-energy ions. However, it is difficult to understand the temporal sequence of such processes. A research group has now succeeded in analyzing on a time scale of one femtosecond what happens to the individual particles involved when an ion penetrates materials such as graphene or molybdenum disulphide.

Engineering: Graphene
Published

Microscopic color converters move small laser-based devices closer to reality      (via sciencedaily.com) 

Researchers have used an atomically thin material to build a device that can change the color of laser beams. Their microscopic device -- a fraction of the size of conventional color converters -- may yield new kinds of ultra-small optical circuit chips and advance quantum optics.

Engineering: Graphene
Published

Super­con­duct­ing diode with­out mag­netic field in mul­ti­layer graphene      (via sciencedaily.com) 

Superconductors are the key to lossless current flow. However, the realization of superconducting diodes has only recently become an important topic of fundamental research. An international research team has now succeeded in reaching a milestone: the demonstration of an extremely strong superconducting diode effect in a single two-dimensional superconductor.

Engineering: Graphene
Published

Unexpected quantum effects in natural double-layer graphene      (via sciencedaily.com) 

An international research team has detected novel quantum effects in high-precision studies of natural double-layer graphene. This research provides new insights into the interaction of the charge carriers and the different phases, and contributes to the understanding of the processes involved.

Engineering: Graphene
Published

A paper battery with water switch      (via sciencedaily.com) 

A team of researchers has developed a water-activated disposable paper battery. The researchers suggest that it could be used to power a wide range of low-power, single-use disposable electronics -- such as smart labels for tracking objects, environmental sensors and medical diagnostic devices -- and minimize their environmental impact.

Engineering: Graphene
Published

Magnetic quantum material broadens platform for probing next-gen information technologies      (via sciencedaily.com) 

Scientists have used neutron scattering to determine whether a specific material's atomic structure could host a novel state of matter called a spiral spin liquid. By tracking tiny magnetic moments known as 'spins' on the honeycomb lattice of a layered iron trichloride magnet, the team found the first 2D system to host a spiral spin liquid.

Engineering: Graphene
Published

Graphene scientists capture images of atoms 'swimming' in liquid      (via sciencedaily.com) 

Graphene scientists have created a novel 'nano-petri dish' using two-dimensional (2D) materials to create a new method of observing how atoms move in liquid.

Engineering: Graphene
Published

Bioinspired protein creates stretchable 2D layered materials      (via sciencedaily.com) 

Nature creates layered materials like bone and mother-of-pearl that become less sensitive to defects as they grow. Now researchers have created, using biomimetic proteins patterned on squid ring teeth, composite layered 2D materials that are resistant to breaking and extremely stretchable.

Engineering: Graphene
Published

Buckyballs on gold are less exotic than graphene      (via sciencedaily.com) 

C60 molecules on a gold substrate appear more complex than their graphene counterparts, but have much more ordinary electronic properties. This is now shown by measurements with ARPES at BESSY II and detailed calculations.

Engineering: Graphene
Published

New research furthers understanding of the electronic structure of graphite      (via sciencedaily.com) 

Graphite is an incredibly important, versatile mineral, with uses spanning industries. Graphite is an essential component of many batteries, including lithium-ion batteries, and demand is only increasing as new technology is developed. Surprisingly, no spectroscopic studies have so far accurately measured the electronic states of the surface and the edge of graphite from a microscopic point of view. Indeed, the improvement in battery performance depends largely on the control of the characteristics of the graphite at the tip.

Engineering: Graphene
Published

Researcher uses graphene for same-time, same-position biomolecule isolation and sensing      (via sciencedaily.com) 

New research has overcome a major challenge to isolating and detecting molecules at the same time and at the same location in a microdevice. The work demonstrates an important advance in using graphene for electrokinetic biosample processing and analysis and could allow lab-on-a-chip devices to become smaller and achieve results faster.

Engineering: Graphene
Published

Research team accelerates imaging techniques for capturing small molecules' structures      (via sciencedaily.com) 

A new research effort is accelerating imaging techniques to visualize structures of small molecules clearly -- a process once thought impossible. Their discovery unleashes endless potential in improving everyday life applications -- from plastics to pharmaceuticals.