Showing 20 articles starting at article 61

< Previous 20 articles        Next 20 articles >

Categories: Energy: Batteries, Engineering: Graphene

Return to the site home page

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Offbeat: Earth and Climate Offbeat: General
Published

A single atom layer of gold: Researchers create goldene      (via sciencedaily.com)     Original source 

For the first time, scientists have managed to create sheets of gold only a single atom layer thick. The material has been termed goldene. According to researchers, this has given the gold new properties that can make it suitable for use in applications such as carbon dioxide conversion, hydrogen production, and production of value-added chemicals.

Engineering: Graphene Engineering: Nanotechnology Physics: Optics
Published

Quantum electronics: Charge travels like light in bilayer graphene      (via sciencedaily.com)     Original source 

An international research team has demonstrated experimentally that electrons in naturally occurring double-layer graphene move like particles without any mass, in the same way that light travels. Furthermore, they have shown that the current can be 'switched' on and off, which has potential for developing tiny, energy-efficient transistors -- like the light switch in your house but at a nanoscale.

Energy: Batteries Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Pyrite, also known as fool's gold, may contain valuable lithium, a key element for green energy      (via sciencedaily.com)     Original source 

The technology revolution and development of new renewable energy resources is driving demand for lithium to new heights, but it is not a common mineral. Scientists say they have found lithium in an unexpected place; fool's gold, or pyrite, deposits.

Chemistry: General Energy: Batteries
Published

Discovery brings all-solid-state sodium batteries closer to practical use      (via sciencedaily.com)     Original source 

Researchers have developed a mass synthesis process for sodium-containing sulfides. Mass synthesis of electrolytes with high conductivity and formability is key to the practical use of all-solid-state sodium batteries, thought to be safer than lithium-ion batteries and less expensive, as sodium is far more plentiful than lithium.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New technique lets scientists create resistance-free electron channels      (via sciencedaily.com)     Original source 

A team has taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state -- an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.

Energy: Batteries Energy: Technology
Published

BESSY II: How pulsed charging enhances the service time of batteries      (via sciencedaily.com)     Original source 

An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces aging effects, an international team demonstrated.

Chemistry: Biochemistry Energy: Batteries Energy: Technology
Published

Drawing inspiration from plants: A metal-air paper battery for wearable devices      (via sciencedaily.com)     Original source 

Drawing inspiration from the way plants breathe, a group of researchers has created a paper-based magnesium-air battery that can be used in GPS sensors or pulse oximeter sensors. Taking advantage of paper's recyclability and lightweight nature, the engineered battery holds promise for a more environmentally friendly source of energy.

Chemistry: General Energy: Batteries Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Unleashing disordered rocksalt oxides as cathodes for rechargeable magnesium batteries      (via sciencedaily.com)     Original source 

Researchers have made a groundbreaking advancement in battery technology, developing a novel cathode material for rechargeable magnesium batteries that enables efficient charging and discharging even at low temperatures.

Energy: Batteries
Published

New materials discovered for safe, high-performance solid-state lithium-ion batteries      (via sciencedaily.com)     Original source 

All-solid-state lithium-ion batteries offer enhanced safety and energy density compared to liquid electrolyte counterparts, but face challenges like lower conductivity and insufficient electrode contact. In a recent study, scientists have discovered a stable, highly conductive lithium-ion conductor in the form of a pyrochlore-type oxyfluoride. This innovation addresses the need for non-sulfide solid electrolytes, offering higher conductivity and stability and paves the way for advanced all-solid-state lithium-ion batteries with improved performance and safety.

Energy: Batteries
Published

Are high-purity cathode materials truly necessary?      (via sciencedaily.com)     Original source 

Researchers introduce a groundbreaking alternative to reduce secondary battery costs.

Biology: General Energy: Batteries Energy: Technology
Published

Implantable batteries can run on the body's own oxygen      (via sciencedaily.com)     Original source 

From pacemakers to neurostimulators, implantable medical devices rely on batteries to keep the heart on beat and dampen pain. But batteries eventually run low and require invasive surgeries to replace. To address these challenges, researchers have devised an implantable battery that runs on oxygen in the body. The study shows in rats that the proof-of-concept design can deliver stable power and is compatible with the biological system.

Chemistry: General Energy: Batteries Energy: Technology
Published

New all-liquid iron flow battery for grid energy storage      (via sciencedaily.com)     Original source 

A new iron-based aqueous flow battery shows promise for grid energy storage applications.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum interference could lead to smaller, faster, and more energy-efficient transistors      (via sciencedaily.com)     Original source 

Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.

Chemistry: Biochemistry Engineering: Graphene
Published

Bioelectronic mesh capable of growing with cardiac tissues for comprehensive heart monitoring      (via sciencedaily.com)     Original source 

A team of engineers has recently built a tissue-like bioelectronic mesh system integrated with an array of atom-thin graphene sensors that can simultaneously measure both the electrical signal and the physical movement of cells in lab-grown human cardiac tissue. This tissue-like mesh can grow along with the cardiac cells, allowing researchers to observe how the heart's mechanical and electrical functions change during the developmental process. The new device is a boon for those studying cardiac disease as well as those studying the potentially toxic side-effects of many common drug therapies.

Biology: Biochemistry Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Ecology: Animals Energy: Batteries Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Crawfish could transfer ionic lithium from their environment into food chain      (via sciencedaily.com)     Original source 

Lithium-ion rechargeable batteries are showing up in ever more devices, and the increasing use of this technology means more lithium is expected to find its way into the environment as a contaminant. In new research, a team has explored how this ion accumulates in a common Southern crustacean, the crawfish, with implications for the environment and public health.

Chemistry: General Energy: Batteries Energy: Technology Engineering: Nanotechnology Environmental: General Geoscience: Geochemistry
Published

Fast-charging lithium-sulphur batteries on the horizon      (via sciencedaily.com)     Original source 

New research shows that the next generation of lithium-sulphur (Li||S) batteries may be capable of being charged in less than five minutes, instead of several hours as is currently the case.

Chemistry: General Chemistry: Thermodynamics Energy: Batteries
Published

Revolutionary method developed for mass-producing polymer solid electrolytes      (via sciencedaily.com)     Original source 

Scientists have unveiled a groundbreaking technique for mass-producing polymer solid electrolytes, crucial components in batteries.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Physics: General
Published

A new world of 2D material is opening up      (via sciencedaily.com)     Original source 

Materials that are incredibly thin, only a few atoms thick, exhibit unique properties that make them appealing for energy storage, catalysis and water purification. Researchers have now developed a method that enables the synthesis of hundreds of new 2D materials.

Chemistry: General Energy: Batteries Energy: Technology Offbeat: General
Published

Batteries for airborne electric vehicles that take off and land vertically      (via sciencedaily.com)     Original source 

Researchers are taking cleaner transportation to the skies by creating and evaluating new batteries for airborne electric vehicles that take off and land vertically. Researchers are developing new energy-dense materials, learning how these materials degrade under extreme conditions, and developing battery control systems.