Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Energy: Batteries, Engineering: Graphene
Published A single atom layer of gold: Researchers create goldene



For the first time, scientists have managed to create sheets of gold only a single atom layer thick. The material has been termed goldene. According to researchers, this has given the gold new properties that can make it suitable for use in applications such as carbon dioxide conversion, hydrogen production, and production of value-added chemicals.
Published Quantum electronics: Charge travels like light in bilayer graphene



An international research team has demonstrated experimentally that electrons in naturally occurring double-layer graphene move like particles without any mass, in the same way that light travels. Furthermore, they have shown that the current can be 'switched' on and off, which has potential for developing tiny, energy-efficient transistors -- like the light switch in your house but at a nanoscale.
Published Pyrite, also known as fool's gold, may contain valuable lithium, a key element for green energy



The technology revolution and development of new renewable energy resources is driving demand for lithium to new heights, but it is not a common mineral. Scientists say they have found lithium in an unexpected place; fool's gold, or pyrite, deposits.
Published Discovery brings all-solid-state sodium batteries closer to practical use



Researchers have developed a mass synthesis process for sodium-containing sulfides. Mass synthesis of electrolytes with high conductivity and formability is key to the practical use of all-solid-state sodium batteries, thought to be safer than lithium-ion batteries and less expensive, as sodium is far more plentiful than lithium.
Published New technique lets scientists create resistance-free electron channels



A team has taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state -- an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.
Published BESSY II: How pulsed charging enhances the service time of batteries



An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces aging effects, an international team demonstrated.
Published Drawing inspiration from plants: A metal-air paper battery for wearable devices



Drawing inspiration from the way plants breathe, a group of researchers has created a paper-based magnesium-air battery that can be used in GPS sensors or pulse oximeter sensors. Taking advantage of paper's recyclability and lightweight nature, the engineered battery holds promise for a more environmentally friendly source of energy.
Published Unleashing disordered rocksalt oxides as cathodes for rechargeable magnesium batteries



Researchers have made a groundbreaking advancement in battery technology, developing a novel cathode material for rechargeable magnesium batteries that enables efficient charging and discharging even at low temperatures.
Published Chemistry researchers modify solar technology to produce a less harmful greenhouse gas



Researchers are using semiconductors to harvest and convert the sun's energy into high-energy compounds that have the potential to produce environmentally-friendly fuels.
Published New materials discovered for safe, high-performance solid-state lithium-ion batteries



All-solid-state lithium-ion batteries offer enhanced safety and energy density compared to liquid electrolyte counterparts, but face challenges like lower conductivity and insufficient electrode contact. In a recent study, scientists have discovered a stable, highly conductive lithium-ion conductor in the form of a pyrochlore-type oxyfluoride. This innovation addresses the need for non-sulfide solid electrolytes, offering higher conductivity and stability and paves the way for advanced all-solid-state lithium-ion batteries with improved performance and safety.
Published Are high-purity cathode materials truly necessary?



Researchers introduce a groundbreaking alternative to reduce secondary battery costs.
Published Implantable batteries can run on the body's own oxygen



From pacemakers to neurostimulators, implantable medical devices rely on batteries to keep the heart on beat and dampen pain. But batteries eventually run low and require invasive surgeries to replace. To address these challenges, researchers have devised an implantable battery that runs on oxygen in the body. The study shows in rats that the proof-of-concept design can deliver stable power and is compatible with the biological system.
Published New all-liquid iron flow battery for grid energy storage



A new iron-based aqueous flow battery shows promise for grid energy storage applications.
Published Quantum interference could lead to smaller, faster, and more energy-efficient transistors



Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.
Published Bioelectronic mesh capable of growing with cardiac tissues for comprehensive heart monitoring



A team of engineers has recently built a tissue-like bioelectronic mesh system integrated with an array of atom-thin graphene sensors that can simultaneously measure both the electrical signal and the physical movement of cells in lab-grown human cardiac tissue. This tissue-like mesh can grow along with the cardiac cells, allowing researchers to observe how the heart's mechanical and electrical functions change during the developmental process. The new device is a boon for those studying cardiac disease as well as those studying the potentially toxic side-effects of many common drug therapies.
Published Crawfish could transfer ionic lithium from their environment into food chain



Lithium-ion rechargeable batteries are showing up in ever more devices, and the increasing use of this technology means more lithium is expected to find its way into the environment as a contaminant. In new research, a team has explored how this ion accumulates in a common Southern crustacean, the crawfish, with implications for the environment and public health.
Published Fast-charging lithium-sulphur batteries on the horizon



New research shows that the next generation of lithium-sulphur (Li||S) batteries may be capable of being charged in less than five minutes, instead of several hours as is currently the case.
Published Revolutionary method developed for mass-producing polymer solid electrolytes



Scientists have unveiled a groundbreaking technique for mass-producing polymer solid electrolytes, crucial components in batteries.
Published A new world of 2D material is opening up



Materials that are incredibly thin, only a few atoms thick, exhibit unique properties that make them appealing for energy storage, catalysis and water purification. Researchers have now developed a method that enables the synthesis of hundreds of new 2D materials.
Published Batteries for airborne electric vehicles that take off and land vertically



Researchers are taking cleaner transportation to the skies by creating and evaluating new batteries for airborne electric vehicles that take off and land vertically. Researchers are developing new energy-dense materials, learning how these materials degrade under extreme conditions, and developing battery control systems.