Showing 20 articles starting at article 141

< Previous 20 articles        Next 20 articles >

Categories: Energy: Nuclear, Engineering: Graphene

Return to the site home page

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Nuclear
Published

Fusion model hot off the wall      (via sciencedaily.com) 

Heat load mitigation is critical to extending the lifetime of future fusion device. Researchers have found a way to explain the rotational temperatures measured in three different experimental fusion devices in Japan and the United States. Their model evaluates the surface interactions and electron-proton collisions of hydrogen molecules.

Engineering: Graphene Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists caught Hofstadter's butterfly in one of the most ancient materials on Earth      (via sciencedaily.com) 

Researchers have revisited one of the most ancient materials on Earth -- graphite, and discovered new physics that has eluded the field for decades.

Engineering: Graphene Engineering: Nanotechnology
Published

Washable, transparent, and flexible OLED with MXene nanotechnology?      (via sciencedaily.com) 

Transparent and flexible displays, which have received a lot of attention in various fields including automobile displays, bio-healthcare, military, and fashion, are in fact known to break easily when experiencing small deformations. To solve this problem, active research is being conducted on many transparent and flexible conductive materials such as carbon nanotubes, graphene, silver nanowires, and conductive polymers.

Chemistry: Thermodynamics Energy: Nuclear
Published

A non-covalent bonding experience      (via sciencedaily.com) 

Putting a suite of new materials synthesis and characterization methods to the test, a team of scientists has developed 14 organic-inorganic hybrid materials, seven of which are entirely new.

Energy: Nuclear Geoscience: Environmental Issues
Published

Unlocking the power of molecular crystals: A possible solution to nuclear waste      (via sciencedaily.com) 

A team researchers has discovered molecular crystals capable of capturing iodine -- one of the most common radioactive fission products -- and other pollutants. The versatile crystals could be used for nuclear waste management and other energy-related applications and move the world closer to a net-zero future.

Energy: Technology Engineering: Graphene Engineering: Nanotechnology
Published

Researchers put a new twist on graphite      (via sciencedaily.com)     Original source 

Researchers report that it is possible to imbue graphite -- the bulk, 3D material found in No. 2 pencils -- with physical properties similar to graphite's 2D counterpart, graphene. Not only was this breakthrough unexpected, the team also believes its approach could be used to test whether similar types of bulk materials can also take on 2D-like properties. If so, 2D sheets won't be the only source for scientists to fuel technological revolutions. Bulk, 3D materials could be just as useful.

Energy: Nuclear
Published

'Stunning' discovery: Metals can heal themselves      (via sciencedaily.com)     Original source 

Researchers announce the first observation of a self-healing metal. If harnessed, the newly discovered phenomenon could someday lead to engines, bridges and airplanes that reverse damage caused by wear and tear, making them safer and longer-lasting.

Energy: Nuclear Offbeat: Space Physics: Quantum Physics Space: Astrophysics Space: Structures and Features
Published

Search for dark matter      (via sciencedaily.com)     Original source 

Scientists have applied a promising new method to search for dark matter particles in a particle accelerator. The method is based on the observation of the spin polarization of a particle beam in a storage ring COSY.

Engineering: Graphene
Published

A bright future in eco-friendly light devices, just add dendrimers, cellulose, and graphene      (via sciencedaily.com)     Original source 

Researchers have developed a light-emitting electrochemical cell using dendrimers, a material gaining popularity in the industry. Moreover, the team found that using biomass derived cellulose acetate as the electrolyte retains the cell's long-life span. Combined with a graphene electrode, the cell has the potential to light the way for a future of eco-friendly and flexible light-emitting devices.

Energy: Alternative Fuels Energy: Fossil Fuels Energy: Nuclear
Published

Public support hydrogen and biofuels to decarbonize global shipping      (via sciencedaily.com)     Original source 

New research into public attitudes towards alternative shipping fuels shows public backing for biofuel and hydrogen. The study also found that nuclear was preferred to the heavy fuel oil (HFO) currently used in the global shipping industry, although both were perceived negatively. Ammonia had the least public support.

Engineering: Graphene Engineering: Nanotechnology Offbeat: Computers and Math
Published

'Electronic skin' from bio-friendly materials can track human vital signs with ultrahigh precision      (via sciencedaily.com)     Original source 

Researchers have used materials inspired by molecular gastronomy to create smart wearables that surpassed similar devices in terms of strain sensitivity. They integrated graphene into seaweed to create nanocomposite microcapsules for highly tunable and sustainable epidermal electronics. When assembled into networks, the tiny capsules can record muscular, breathing, pulse, and blood pressure measurements in real-time with ultrahigh precision.

Energy: Nuclear
Published

New driver for shapes of small quark-gluon plasma drops?      (via sciencedaily.com)     Original source 

New measurements of how particles flow from collisions of different types of particles at the Relativistic Heavy Ion Collider (RHIC) have provided new insights into the origin of the shape of hot specks of matter generated in these collisions. The results may lead to a deeper understanding of the properties and dynamics of this form of matter, known as a quark-gluon plasma (QGP).

Engineering: Graphene Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics
Published

Terahertz-to-visible light conversion for future telecommunications      (via sciencedaily.com)     Original source 

A study demonstrates that graphene-based materials can be used to efficiently convert high-frequency signals into visible light, and that this mechanism is ultrafast and tunable. These outcomes open the path to exciting applications in near-future information and communication technologies.

Engineering: Graphene Physics: General
Published

Shining potential of missing atoms      (via sciencedaily.com)     Original source 

Single photons have applications in quantum computation, information networks, and sensors, and these can be emitted by defects in the atomically thin insulator hexagonal boron nitride (hBN). Missing nitrogen atoms have been suggested to be the atomic structure responsible for this activity, but it is difficult to controllably remove them. A team has now shown that single atoms can be kicked out using a scanning transmission electron microscope under ultra-high vacuum.

Chemistry: General Energy: Batteries Engineering: Graphene Environmental: General Geoscience: Geochemistry
Published

Aluminium-ion batteries with improved storage capacity      (via sciencedaily.com)     Original source 

Scientists develop positive electrode material using an organic redox polymer based on phenothiazine. Aluminium-ion batteries containing this material stored an unprecedented 167 milliampere hours per gram, outperforming batteries using graphite as electrode material. Aluminium-ion batteries are considered a promising alternative to conventional batteries that use scarce raw materials such as lithium.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Physics
Published

Calculation shows why heavy quarks get caught up in the flow      (via sciencedaily.com)     Original source 

Theorists have calculated how quickly a melted soup of quarks and gluons -- the building blocks of protons and neutrons -- transfers its momentum to heavy quarks. The calculation will help explain experimental results showing heavy quarks getting caught up in the flow of matter generated in heavy ion collisions.

Chemistry: Biochemistry Engineering: Graphene
Published

Unveiling the nanoscale frontier: innovating with nanoporous model electrodes      (via sciencedaily.com)     Original source 

Researchers have introduced a next-generation model membrane electrode that promises to revolutionize fundamental electrochemical research.

Chemistry: Inorganic Chemistry Engineering: Graphene
Published

Producing large, clean 2D materials made easy      (via sciencedaily.com)     Original source 

An international team of surface scientists has now developed a simple method to produce large and very clean 2D samples from a range of materials using three different substrates.

Chemistry: Inorganic Chemistry Energy: Nuclear Environmental: General Physics: General Physics: Optics Space: Astrophysics Space: General Space: Structures and Features
Published

Under pressure: Foundations of stellar physics and nuclear fusion investigated      (via sciencedaily.com)     Original source 

Research using the world's most energetic laser has shed light on the properties of highly compressed matter -- essential to understanding the structure of giant planets and stars, and to develop controlled nuclear fusion, a process that could harvest carbon-free energy.