Showing 20 articles starting at article 21

< Previous 20 articles        Next 20 articles >

Categories: Energy: Nuclear, Engineering: Graphene

Return to the site home page

Energy: Nuclear
Published

Metal alloys that can take the heat      (via sciencedaily.com)     Original source 

Complex metal alloys enter a new era of predictive design for aerospace and other high-temperature applications.

Chemistry: Thermodynamics Energy: Nuclear Physics: General
Published

New plasma escape mechanism could protect fusion vessels from excessive heat      (via sciencedaily.com)     Original source 

The exhaust heat generated by a fusing plasma in a commercial-scale reactor may not be as damaging to the vessel's innards as once thought, according to new research about escaping plasma particles.

Energy: Nuclear Energy: Technology
Published

US public opinion on social media is warming to nuclear energy, but concerns remain      (via sciencedaily.com)     Original source 

The U.S. public displays more positive than negative sentiment toward nuclear energy but concerns remain about waste, cost and safety, according to an analysis of 300,000 posts on social media.

Energy: Nuclear Physics: General
Published

AI approach elevates plasma performance and stability across fusion devices      (via sciencedaily.com)     Original source 

Fusion researchers have successfully deployed machine learning methods to suppress harmful plasma edge instabilities without sacrificing plasma performance.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

Towards next-gen functional materials: direct observation of electron transfer in solids      (via sciencedaily.com)     Original source 

Nanoscale electron transfer (ET) in solids is fundamental to the development of multifunctional materials. However, ET in solids is not yet clearly understood. Now, researchers achieved a direct observation of solid-state ET through X-ray crystal analysis by fabricating a novel double-walled non-covalent crystalline nanotube, which can absorb electron donor molecules and maintain its crystalline structure during ET. This innovative approach can lead to the design of novel functional materials soon.

Engineering: Graphene Physics: General
Published

Graphene gets cleaned up      (via sciencedaily.com)     Original source 

Engineers establish the link between oxygen and graphene quality and present an oxygen-free chemical vapor deposition method (OF-CVD) that can reproducibly create high-quality samples for large-scale production. The graphene they synthesized with their new method proved nearly identical to exfoliated samples and was capable of producing the fractional quantum Hall effect.

Energy: Nuclear Physics: General
Published

Apple versus donut: How the shape of a tokamak impacts the limits of the edge of the plasma      (via sciencedaily.com)     Original source 

A new model for ballooning instabilities in apple-shaped fusion vessels considers the height and width of the plasma's edge.

Chemistry: Thermodynamics Energy: Nuclear Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Breakthrough discovery uses engineered surfaces to shed heat      (via sciencedaily.com)     Original source 

Splash a few drops of water on a hot pan and if the pan is hot enough, the water will sizzle and the droplets of water seem to roll and float, hovering above the surface. The temperature at which this phenomenon, called the Leidenfrost effect, occurs is predictable, usually happening above 230 degrees Celsius. A team has now discovered a method to create the aquatic levitation at a much lower temperature.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

Scientists develop new battery-free lactic acid sensor      (via sciencedaily.com)     Original source 

Scientists have created a new type of chemosensor (demonstrated for lactic acid sensing) which functions with electricity but without the need for reference electrodes or battery power.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Enhancing superconductivity of graphene-calcium superconductors      (via sciencedaily.com)     Original source 

Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics
Published

Ion irradiation offers promise for 2D material probing      (via sciencedaily.com)     Original source 

Two-dimensional materials such as graphene promise to form the basis of incredibly small and fast technologies, but this requires a detailed understanding of their electronic properties. New research demonstrates that fast electronic processes can be probed by irradiating the materials with ions first.

Chemistry: Inorganic Chemistry Energy: Nuclear Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Magnetic imprint on deconfined nuclear matter      (via sciencedaily.com)     Original source 

Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.

Chemistry: General Energy: Nuclear Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Much more than a world first image of radioactive cesium atoms      (via sciencedaily.com)     Original source 

Thirteen years after the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP), a breakthrough in analysis has permitted a world first: direct imaging of radioactive cesium (Cs) atoms in environmental samples.

Chemistry: Biochemistry Energy: Nuclear Environmental: General Geoscience: Environmental Issues
Published

The case for sharing carbon storage risk      (via sciencedaily.com)     Original source 

Even the most optimistic projections for the rapid build-out of solar, wind, and other low-carbon resources acknowledge that coal, natural gas, and other fossil fuels will dominate the world's energy mix for decades to come. If the vast greenhouse gas emissions from burning these fossil fuels continue to enter the planet's atmosphere, global warming will not be limited to sustainable levels. The capture and geologic sequestration of carbon emissions (CCS) offer a promising solution to the world's carbon conundrum.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

2D all-organic perovskites: potential use in 2D electronics      (via sciencedaily.com)     Original source 

Perovskites are among the most researched topics in materials science. Recently, a research team has solved an age-old challenge to synthesize all-organic two-dimensional perovskites, extending the field into the exciting realm of 2D materials. This breakthrough opens up a new field of 2D all-organic perovskites, which holds promise for both fundamental science and potential applications.

Chemistry: General Energy: Nuclear Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General
Published

New Nevada experiments will improve monitoring of nuclear explosions      (via sciencedaily.com)     Original source 

On an October morning in 2023, a chemical explosion detonated in a tunnel under the Nevada desert was the launch of the next set of experiments by the National Nuclear Security Administration, with the goal to improve detection of low-yield nuclear explosions around the world.

Energy: Nuclear Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Atomic nucleus excited with laser: a breakthrough after decades      (via sciencedaily.com)     Original source 

For the first time, the state of an atomic nucleus was switched with a laser. For decades, physicists have been looking for such a nuclear transition -- now it has been found. This opens up a new field of research with many technological applications. Now, nuclei can be used for extremely precise measurements. For example, a nuclear clock could be built that could measure time more precisely than the best atomic clocks available today.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

'Like a nanoscopic Moon lander': Scientists unlock secret of how pyramidal molecules move across surfaces      (via sciencedaily.com)     Original source 

Scientists have watched a molecule move across a graphite surface in unprecedented detail. It turns out this particular molecule moves like a Moon lander -- and the insights hold potential for future nanotechnologies.