Showing 20 articles starting at article 141

< Previous 20 articles        Next 20 articles >

Categories: Energy: Technology, Engineering: Graphene

Return to the site home page

Energy: Nuclear Energy: Technology Physics: General
Published

With inspiration from 'Tetris,' researchers develop a better radiation detector      (via sciencedaily.com)     Original source 

A new detector system based on the game 'Tetris' could enable inexpensive, accurate radiation detectors for monitoring nuclear sites.

Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Energy: Technology Environmental: General Geoscience: Geochemistry
Published

New device gathers, stores electricity in remote settings      (via sciencedaily.com)     Original source 

Wirelessly connected devices perform an expanding array of applications, such as monitoring the condition of machinery and remote sensing in agricultural settings. These applications hold much potential for improving the efficiency, but how do you power these devices where reliable electrical sources are not available? Research points to a possible solution in the form of a novel type of battery.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New technique lets scientists create resistance-free electron channels      (via sciencedaily.com)     Original source 

A team has taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state -- an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.

Energy: Batteries Energy: Technology
Published

BESSY II: How pulsed charging enhances the service time of batteries      (via sciencedaily.com)     Original source 

An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces aging effects, an international team demonstrated.

Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Physics: Optics
Published

New four-terminal tandem organic solar cell achieves 16.94% power conversion efficiency      (via sciencedaily.com)     Original source 

Researchers have fabricated a new four-terminal organic solar cell with a tandem configuration with a 16.94% power conversion efficiency (PCE). The new device is composed by a highly transparent front cell that incorporates a transparent ultrathin silver (Ag) electrode of only 7nm, which ensures its efficient operation.

Chemistry: General Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Using pulp and paper waste to scrub carbon from emissions      (via sciencedaily.com)     Original source 

Researchers have come up with an innovative approach to improve the energy efficiency of carbon conversion, using waste material from pulp and paper production. The technique they've pioneered not only reduces the energy required to convert carbon into useful products, but also reduces overall waste in the environment.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geology
Published

'Tug of war' tactic enhances chemical separations for critical materials      (via sciencedaily.com)     Original source 

Lanthanide elements are important for clean energy and other applications. To use them, industry must separate mixed lanthanide sources into individual elements using costly, time-consuming, and waste-generating procedures. An efficient new method can be tailored to select specific lanthanides. The technique combines two substances that do not mix and that prefer different types of lanthanides. The process would allow for smaller equipment, less use of chemicals, and less waste production.

Chemistry: Biochemistry Energy: Batteries Energy: Technology
Published

Drawing inspiration from plants: A metal-air paper battery for wearable devices      (via sciencedaily.com)     Original source 

Drawing inspiration from the way plants breathe, a group of researchers has created a paper-based magnesium-air battery that can be used in GPS sensors or pulse oximeter sensors. Taking advantage of paper's recyclability and lightweight nature, the engineered battery holds promise for a more environmentally friendly source of energy.

Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Magnetic fields boost clean energy      (via sciencedaily.com)     Original source 

Researchers show that using magnetic fields can boost electrocatalysis for sustainable fuel production by enhancing the movement of the reactants, which improves the efficiency of energy-related reactions.

Energy: Technology Environmental: General Environmental: Water
Published

A simple way to harvest more 'blue energy' from waves      (via sciencedaily.com)     Original source 

As any surfer will tell you, waves pack a powerful punch. Now, we are one step closer to capturing the energy behind the ocean's constant ebb and flow with an improved 'blue energy' harvesting device. Researchers report that simply repositioning the electrode -- from the center of a see-sawing liquid-filled tube to the end where the water crashes with the most force -- dramatically increased the amount of wave energy that could be harvested.

Energy: Technology Environmental: General
Published

Building blocks for greener energy: Reconfigurable elastic metasurface      (via sciencedaily.com)     Original source 

Energy harvesting, an eco-friendly technology, extends beyond solar and wind power in generating electricity from unused or discarded energy in daily life, including vibrations generated by passing car engines or trains. Recent intriguing research has been announced, aiming to enhance the efficiency of energy harvesting using a new type of metasurface that can be reconfigured, resembling the assembly of LEGO bricks.

Chemistry: Biochemistry Energy: Technology Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers discover dual topological phases in an intrinsic monolayer crystal      (via sciencedaily.com)     Original source 

An international team working with single-atom thick crystals found TaIrTe4's transition between the two distinct topological states of insulation and conduction. The material exhibited zero electrical conductivity within its interior, while its boundaries remain conductive. The team's investigation determined that the two topological states stem from disparate origins. The novel properties can serve as a promising platform for exploring exotic quantum phases and electromagnetism.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Engineers 'symphonize' cleaner ammonia production      (via sciencedaily.com)     Original source 

Among the many chemicals we use every day, ammonia is one of the worst for the atmosphere. The nitrogen-based chemical used in fertilizer, dyes, explosives and many other products ranks second only to cement in terms of carbon emissions, due to the high temperatures and energy needed to manufacture it. But by improving on a well-known electrochemical reaction and orchestrating a 'symphony' of lithium, nitrogen and hydrogen atoms, engineers have developed a new ammonia production process that meets several green targets.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues
Published

Heat, cold extremes hold untapped potential for solar and wind energy      (via sciencedaily.com)     Original source 

Conditions that usually accompany the kind of intense hot and cold weather that strains power grids may also provide greater opportunities to capture solar and wind energy. A study found that widespread, extreme temperature events are often accompanied by greater solar radiation and higher wind speeds that could be captured by solar panels and wind turbines. The research, which looked at extensive heat and cold waves across the six interconnected energy grid regions of the U.S. from 1980-2021, also found that every region experienced power outages during these events in the past decade. The findings suggest that using more renewable energy at these times could help offset increased power demand as more people and businesses turn on heaters or air conditioners.

Biology: General Energy: Batteries Energy: Technology
Published

Implantable batteries can run on the body's own oxygen      (via sciencedaily.com)     Original source 

From pacemakers to neurostimulators, implantable medical devices rely on batteries to keep the heart on beat and dampen pain. But batteries eventually run low and require invasive surgeries to replace. To address these challenges, researchers have devised an implantable battery that runs on oxygen in the body. The study shows in rats that the proof-of-concept design can deliver stable power and is compatible with the biological system.

Chemistry: General Computer Science: General Computer Science: Virtual Reality (VR) Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Pairing crypto mining with green hydrogen offers clean energy boost      (via sciencedaily.com)     Original source 

Pairing cryptocurrency mining -- notable for its outsize consumption of carbon-based fuel -- with green hydrogen could provide the foundation for wider deployment of renewable energy, such as solar and wind power, according to a new study.

Chemistry: General Energy: Batteries Energy: Technology
Published

New all-liquid iron flow battery for grid energy storage      (via sciencedaily.com)     Original source 

A new iron-based aqueous flow battery shows promise for grid energy storage applications.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum interference could lead to smaller, faster, and more energy-efficient transistors      (via sciencedaily.com)     Original source 

Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.

Chemistry: Biochemistry Engineering: Graphene
Published

Bioelectronic mesh capable of growing with cardiac tissues for comprehensive heart monitoring      (via sciencedaily.com)     Original source 

A team of engineers has recently built a tissue-like bioelectronic mesh system integrated with an array of atom-thin graphene sensors that can simultaneously measure both the electrical signal and the physical movement of cells in lab-grown human cardiac tissue. This tissue-like mesh can grow along with the cardiac cells, allowing researchers to observe how the heart's mechanical and electrical functions change during the developmental process. The new device is a boon for those studying cardiac disease as well as those studying the potentially toxic side-effects of many common drug therapies.