Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Engineering: Graphene
Published New microcomb device advances photonic technology



Researchers have outlined a new high-speed tunable microcomb that could help propel advances in wireless communication, imaging, atomic clocks, and more.
Published Inside-out heating and ambient wind could make direct air capture cheaper and more efficient



Chemical engineers use coated carbon fibers and eliminate steam-based heating in their simpler design, which also can be powered by wind energy.
Published Vastly more sustainable, cost-effective method to desalinate industrial wastewater



Engineers are developing a cutting-edge process that can reduce energy consumption and cost of water desalination.
Published How tidal range electricity generation could meet future demand and storage problems



Tidal range schemes are financially viable and could lower energy bills say researchers. Research combined a tidal range power generation model with its cost model to demonstrate the viability of tidal power. The research demonstrates the benefits of tidal energy, which does not suffer from unpredictable intermittency as power is generated both day and night, and in windy or calm weather. The creation of a tidal barrage could operate for 120 years or more to meet future demand and storage problems.
Published To boost supply chains, scientists are looking at ways to recover valuable materials from water



Researchers are exploring the different ways of harvesting materials from water.
Published Engineers develop a soft, printable, metal-free electrode



Engineers developed a metal-free, Jelly-like material that is as soft and tough as biological tissue and can conduct electricity similarly to conventional metals. The new material, which is a type of high-performance conducting polymer hydrogel, may one day replace metals in the electrodes of medical devices.
Published Energy harvesting via vibrations: Researchers develop highly durable and efficient device



An international research group has engineered a new energy-generating device by combining piezoelectric composites with carbon fiber-reinforced polymer (CFRP), a commonly used material that is both light and strong. The new device transforms vibrations from the surrounding environment into electricity, providing an efficient and reliable means for self-powered sensors.
Published Terahertz-to-visible light conversion for future telecommunications



A study demonstrates that graphene-based materials can be used to efficiently convert high-frequency signals into visible light, and that this mechanism is ultrafast and tunable. These outcomes open the path to exciting applications in near-future information and communication technologies.
Published Metaverse could put a dent in global warming



For many technology enthusiasts, the metaverse has the potential to transform almost every facet of human life, from work to education to entertainment. Now, new research shows it could have environmental benefits, too.
Published Shining potential of missing atoms



Single photons have applications in quantum computation, information networks, and sensors, and these can be emitted by defects in the atomically thin insulator hexagonal boron nitride (hBN). Missing nitrogen atoms have been suggested to be the atomic structure responsible for this activity, but it is difficult to controllably remove them. A team has now shown that single atoms can be kicked out using a scanning transmission electron microscope under ultra-high vacuum.
Published Aluminium-ion batteries with improved storage capacity



Scientists develop positive electrode material using an organic redox polymer based on phenothiazine. Aluminium-ion batteries containing this material stored an unprecedented 167 milliampere hours per gram, outperforming batteries using graphite as electrode material. Aluminium-ion batteries are considered a promising alternative to conventional batteries that use scarce raw materials such as lithium.
Published All-electric rideshare fleet could reduce carbon emissions, increase traffic issues



Two major ridesharing companies have promised all-electric fleets by 2030 in an effort to reduce their carbon footprint. To understand additional impacts of this transition, researchers conducted life-cycle comparisons of battery-powered electric vehicle fleets to a gas-powered one, using real-world rideshare data. They found up to a 45% reduction in greenhouse gas emissions from full electrification; however, traffic problems and air pollution could increase.
Published Novel ferroelectrics for more efficient microelectronics



A team of researchers is exploring novel materials that have potential to make microelectronics more energy efficient. Their recent work explores recently discovered wurtzite ferroelectrics, which are mainly composed of materials that are already incorporated in semiconductor technology for integrated circuits. These materials allow for the integration of new power-efficient devices for applications such as non-volatile memory, electro-optics, and energy harvesting.
Published Megawatt electrical motor designed by engineers could help electrify aviation



Aerospace engineers designed a 1-megawatt electrical motor that is a stepping stone toward electrifying the largest aircraft.
Published New superconducting diode could improve performance of quantum computers and artificial intelligence



A team has developed a more energy-efficient, tunable superconducting diode -- a promising component for future electronic devices -- that could help scale up quantum computers for industry and improve artificial intelligence systems.
Published Unveiling the nanoscale frontier: innovating with nanoporous model electrodes



Researchers have introduced a next-generation model membrane electrode that promises to revolutionize fundamental electrochemical research.
Published Producing large, clean 2D materials made easy



An international team of surface scientists has now developed a simple method to produce large and very clean 2D samples from a range of materials using three different substrates.
Published Flexible nanoelectrodes can provide fine-grained brain stimulation



Engineers have developed ultraflexible implantable nanoelectrodes that can administer long-term, fine-grained brain stimulation.
Published New catalyst lowers cost for producing environmentally sustainable hydrogen from water



A team has developed a new catalyst composed of elements abundant in the Earth. It could make possible the low-cost and energy-efficient production of hydrogen for use in transportation and industrial applications.
Published The next generation of solar energy collectors could be rocks



The next generation of sustainable energy technology might be built from some low-tech materials: rocks and the sun. Using a new approach known as concentrated solar power, heat from the sun is stored then used to dry foods or create electricity. A team has found that certain soapstone and granite samples from Tanzania are well suited for storing this solar heat, featuring high energy densities and stability even at high temperatures.