Showing 20 articles starting at article 561
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Engineering: Graphene
Published Research reveals thermal instability of solar cells but offers a bright path forward


Researchers reveal the thermal instability that happens within the cells' interface layers, but also offers a path forward towards reliability and efficiency for halide perovskite solar technology.
Published Novel microscope developed to design better high-performance batteries


A research team has developed an operando reflection interference microscope (RIM) that provides a better understanding of how batteries work, which has significant implications for the next generation of batteries.
Published Make them thin enough, and antiferroelectric materials become ferroelectric


Antiferroelectric materials have electrical properties that make them advantageous for use in high-density energy storage applications. Researchers have now discovered a size threshold beyond which antiferroelectrics lose those properties, becoming ferroelectric.
Published Fighting climate change: Ruthenium complexes for carbon dioxide reduction to valuable chemicals


Excessive use of fossil fuels leads to undesired carbon dioxide (CO2) generation, accelerating climate change. One way to tackle this is by converting CO2 into value-added chemicals. On this front, researchers have recently utilized a novel redox couple, for the purpose.
Published Controllable 'defects' improve performance of lithium-ion batteries


Some defects can be good. A new study shows that laser-induced defects in lithium-ion battery materials improve the performance of the battery.
Published Severe weather straining electrical grids: New research mitigates demand surges, increasing grid reliability and reducing costs


Concerns are mounting among policymakers and utility companies amid the impact of severe weather on the nation's electrical grids. In recent months, electrical grids in Texas have been tested to the point of near failure. So it seems like perfect timing that new research identifies a new method that provides the best way to utilize 'direct load control contracts' to mitigate electricity demand surges, increase grid reliability and reduce electricity cost. All of this right down to the individual household.
Published New sodium, aluminum battery aims to integrate renewables for grid resiliency


A new sodium battery technology shows promise for helping integrate renewable energy into the electric grid. The battery uses Earth-abundant raw materials such as aluminum and sodium.
Published A quasiparticle that can transfer heat under electrical control


Scientists have found the secret behind a property of solid materials known as ferroelectrics, showing that quasiparticles moving in wave-like patterns among vibrating atoms carry enough heat to turn the material into a thermal switch when an electrical field is applied externally.
Published Passive radiative cooling can now be controlled electrically


Energy-efficient ways of cooling buildings and vehicles will be required in a changing climate. Researchers have now shown that electrical tuning of passive radiative cooling can be used to control temperatures of a material at ambient temperatures and air pressure.
Published New research computes first step toward predicting lifespan of electric space propulsion systems



Electric space propulsion systems use energized atoms to generate thrust. The high-speed beams of ions bump against the graphite surfaces of the thruster, eroding them with each hit, and are the systems' primary lifetime-limiting factor. Researchers used data from low-pressure chamber experiments and large-scale computations to develop a model to better understand the effects of ion erosion on carbon surfaces -- the first step in predicting its failure.
Published Novel device enables high-resolution observation of liquid phase dynamic processes at nanoscale


In situ observation and recording of important liquid-phase electrochemical reactions in energy devices is crucial for the advancement of energy science. A research team has recently developed a novel, tiny device to hold liquid specimens for transmission electron microscopy (TEM) observation, opening the door to directly visualizing and recording complex electrochemical reactions at nanoscale in real-time at high resolution. The research team believes that this innovative method will shed light on strategies for fabricating a powerful research tool for uncovering the mysteries of electrochemical processes in the future.
Published Powering wearable technology with MXene textile supercapacitor 'patch'


Researchers are one step closer to making wearable textile technology a reality. Materials scientists have reported a new design of a flexible wearable supercapacitor patch. It uses MXene to create a textile-based supercapacitor that can charge in minutes and power an Arduino microcontroller temperature sensor and radio communication of data for almost two hours.
Published Superconductivity switches on and off in 'magic-angle' graphene


Physicists have found a new way to switch superconductivity on and off in magic-angle graphene. The discovery could lead to ultrafast, energy-efficient superconducting transistors for 'neuromorphic' electronics that operate similarly to the rapid on/off firing of neurons in the human brain.
Published Researchers can 'see' crystals perform their dance moves


Researchers already knew the atoms in perovskites react favorably to light. Now they've seen precisely how the atoms move when the 2D materials are excited with light. Their study details the first direct measurement of structural dynamics under light-induced excitation in 2D perovskites.
Published Researchers demo new type of carbon nanotube yarn that harvests mechanical energy


Nanotechnology researchers have made novel carbon nanotube yarns that convert mechanical movement into electricity more effectively than other material-based energy harvesters.
Published Scientists observe 'quasiparticles' in classical systems


Quasiparticles -- long-lived particle-like excitations -- are a cornerstone of quantum physics, with famous examples such as Cooper pairs in superconductivity and, recently, Dirac quasiparticles in graphene. Now, researchers have discovered quasiparticles in a classical system at room temperature: a two-dimensional crystal of particles driven by viscous flow in a microfluidic channel. Coupled by hydrodynamic forces, the particles form stable pairs -- a first example of classical quasiparticles, revealing deep links between quantum and classical dissipative systems.
Published Physicists solve mystery of two-dimensional quasicrystal formation from metal oxides


The structure of two-dimensional titanium oxide brakes-up at high temperatures by adding barium; instead of regular hexagons, rings of four, seven and ten atoms are created that order aperiodically. A team has now solved the riddle of two-dimensional quasicrystal formation from metal oxides.
Published Transistors repurposed as microchip 'clock' address supply chain weakness


A new technique uses standard chip fab methods to fabricate the building block of a timing device, critical to all microprocessors. Currently, this timing device, known as an acoustic resonator, must be produced separately, often overseas, creating a supply chain and security weakness. The technique would allow for this timing device to be integrated with the microprocessor using standard CMOS processing, rather than later bunded with the microprocessor.
Published Artificial photosynthesis uses sunlight to make biodegradable plastic


Scientists have succeeded in synthesizing fumaric acid, a raw material for plastics, from CO2 powered by solar energy. Typically, fumaric acid is synthesized from petroleum as a raw material to make polybutylene succinate, a biodegradable plastic, but this research shows that it can be synthesized from CO2 and biomass-derived compounds using renewable energy.
Published Plasma thrusters used on satellites could be much more powerful



It was believed that Hall thrusters, an efficient kind of electric propulsion widely used in orbit, need to be large to produce a lot of thrust. Now, a new study suggests that smaller Hall thrusters can generate much more thrust -- potentially making them candidates for interplanetary missions.