Showing 20 articles starting at article 1
Categories: Energy: Fossil Fuels, Engineering: Graphene
Published A method that paves the way for improved fuel cell vehicles



More efficient and longer-lasting fuel cells are essential for fuel cell-powered heavy-duty hydrogen vehicles to be an alternative to combustion fuelled counterparts. Researchers have developed an innovative method to study and understand how parts of fuel cells degrade over time. This is an important step towards the improved performance of fuel cells and them becoming commercially successful.
Published Breaking new ground for computing technologies with electron-hole crystals



A team developed a novel method to successfully visualise electron-hole crystals in an exotic quantum material. Their breakthrough could pave the way for new advancements in computing technologies, including in-memory and quantum computing.
Published Win-win potential of grass-powered energy production



Researchers modeled the impact of using anaerobic digestion to produce renewable natural gas from grassy biomass in different settings and from varying perspectives, analysis that helps flesh out the system's potential.
Published Scientists work to build 'wind-up' sensors



An international team of scientists has shown that twisted carbon nanotubes can store three times more energy per unit mass than advanced lithium-ion batteries. The finding may advance carbon nanotubes as a promising solution for storing energy in devices that need to be lightweight, compact, and safe, such as medical implants and sensors.
Published 'Kink state' control may provide pathway to quantum electronics



The key to developing quantum electronics may have a few kinks. According to researchers, that's not a bad thing when it comes to the precise control needed to fabricate and operate such devices, including advanced sensors and lasers. The researchers fabricated a switch to turn on and off the presence of kink states, which are electrical conduction pathways at the edge of semiconducting materials.
Published Researchers develop new method for achieving controllable tuning and assessing instability in 2D materials for engineering applications



Two-dimensional (2D) materials have atomic-level thickness and excellent mechanical and physical properties, with broad application prospects in fields such as semiconductors, flexible devices, and composite materials.
Published Study shows new efficiency standards for heavy trucks could boost energy use



A new study suggests that the U.S. government's push to increase heavy-duty trucks' energy efficiency could encourage more shipping by truck instead of rail, reducing the policies' anticipated effectiveness by 20%.
Published Hydrogen flight looks ready for take-off with new advances



The possibility of hydrogen-powered flight means greater opportunities for fossil-free travel, and the technological advances to make this happen are moving fast. New studies show that almost all air travel within a 750-mile radius (1200 km) could be made with hydrogen-powered aircraft by 2045, and with a novel heat exchanger currently in development, this range could be even further.
Published A new material derived from graphene improves the performance of neuroprostheses



Neuroprostheses allow the nervous system of a patient who has suffered an injury to connect with mechanical devices that replace paralyzed or amputated limbs. A study demonstrates in animal models how EGNITE, a derivative of graphene, allows the creation of smaller electrodes, which can interact more selectively with the nerves they stimulate, thus improving the efficacy of the prostheses.
Published Pinpointing coal plants to convert to nuclear energy, considering both practicality and community support



An assessment ranks the feasibility of converting 245 operational coal power plants in the U.S. into advanced nuclear reactors, providing valuable insights for policymakers and utilities to meet decarbonization goals, according to a new study.
Published A 2D device for quantum cooling



Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Published Single atoms show their true color



A new technique reveals single atom misfits and could help design better semiconductors used in modern and future electronics.
Published Strengthener for graphene



Layers of carbon atoms in a honeycomb array are a true supermaterial: their unusually high conductivity and favorable mechanical properties could further the development of bendable electronics, new batteries, and innovative composite materials for aeronautics and space flight. However, the development of elastic and tough films remains a challenge. A research team has now introduced a method to overcome this hurdle: they linked graphene nanolayers via 'extendable' bridging structures.
Published A 'liquid battery' advance



A team aims to improve options for renewable energy storage through work on an emerging technology -- liquids for hydrogen storage.
Published Towards next-gen functional materials: direct observation of electron transfer in solids



Nanoscale electron transfer (ET) in solids is fundamental to the development of multifunctional materials. However, ET in solids is not yet clearly understood. Now, researchers achieved a direct observation of solid-state ET through X-ray crystal analysis by fabricating a novel double-walled non-covalent crystalline nanotube, which can absorb electron donor molecules and maintain its crystalline structure during ET. This innovative approach can lead to the design of novel functional materials soon.
Published Innovative demand strategies for clean energy



A perspective piece describes innovative strategies that significantly reduce both resource consumption and fossil fuel emissions.
Published Graphene gets cleaned up



Engineers establish the link between oxygen and graphene quality and present an oxygen-free chemical vapor deposition method (OF-CVD) that can reproducibly create high-quality samples for large-scale production. The graphene they synthesized with their new method proved nearly identical to exfoliated samples and was capable of producing the fractional quantum Hall effect.
Published Controlling water, transforming greenhouse gases



Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.
Published Scientists develop new battery-free lactic acid sensor



Scientists have created a new type of chemosensor (demonstrated for lactic acid sensing) which functions with electricity but without the need for reference electrodes or battery power.
Published Can coal mines be tapped for rare earth elements?



A team of geologists analyzed 3,500 samples taken in and around coal mines in Utah and Colorado. Their findings open the possibility that these mines could see a secondary resource stream in the form of rare earth metals used in renewable energy and numerous other high-tech applications.