Showing 20 articles starting at article 121

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Biometric, Engineering: Graphene

Return to the site home page

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

Nano cut-and-sew: New method for chemically tailoring layered nanomaterials could open pathways to designing 2D materials on demand      (via sciencedaily.com) 

A new process that lets scientists chemically cut apart and stitch together nanoscopic layers of two-dimensional materials -- like a tailor altering a suit -- could be just the tool for designing the technology of a sustainable energy future. Researchers have developed a method for structurally splitting, editing and reconstituting layered materials, called MAX phases and MXenes, with the potential of producing new materials with very unusual compositions and exceptional properties.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

3D internal structure of rechargeable batteries revealed      (via sciencedaily.com) 

Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.

Chemistry: Organic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

Microscopy: Highest resolution in three dimensions      (via sciencedaily.com) 

Researchers have developed a super-resolution microscopy method for the rapid differentiation of molecular structures in 3D.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Graphene quantum dots show promise as novel magnetic field sensors      (via sciencedaily.com) 

Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New material may offer key to solving quantum computing issue      (via sciencedaily.com) 

A new form of heterostructure of layered two-dimensional (2D) materials may enable quantum computing to overcome key barriers to its widespread application, according to an international team of researchers.

Computer Science: Quantum Computers Engineering: Graphene Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

The quantum twisting microscope: A new lens on quantum materials      (via sciencedaily.com) 

One of the striking aspects of the quantum world is that a particle, say, an electron, is also a wave, meaning that it exists in many places at the same time. Researchers make use of this property to develop a new type of tool -- the quantum twisting microscope (QTM) -- that can create novel quantum materials while simultaneously gazing into the most fundamental quantum nature of their electrons.

Energy: Batteries Energy: Fossil Fuels Energy: Technology Engineering: Graphene
Published

Ramping up domestic graphite production could aid the green energy transition      (via sciencedaily.com) 

Given the growing importance of graphite in energy storage technologies, a team of esearchers has conducted a study exploring ways to reduce reliance on imports of the in high-demand mineral, which powers everything from electric vehicles (EVs) to cell phones.

Engineering: Graphene
Published

Smooth sailing for electrons in graphene      (via sciencedaily.com) 

Physicists have directly measured, for the first time at nanometer resolution, the fluid-like flow of electrons in graphene. The results have applications in developing new, low-resistance materials, where electrical transport would be more efficient.

Engineering: Graphene Engineering: Nanotechnology Geoscience: Environmental Issues
Published

From plastic waste to valuable nanomaterials      (via sciencedaily.com) 

Scientists create carbon nanotubes and other hybrid nanomaterials out of plastic waste using an energy-efficient, low-cost, low-emissions process that could also be profitable.

Computer Science: General Computer Science: Virtual Reality (VR) Engineering: Graphene
Published

Virtual and augmented reality: Researchers pioneer process to stack micro-LEDs      (via sciencedaily.com) 

Researchers are using emerging technology to demonstrate a process that will enable more immersive and realistic virtual and augmented reality displays with the world's smallest and thinnest micro-LEDs.

Engineering: Graphene Space: Exploration
Published

New research computes first step toward predicting lifespan of electric space propulsion systems      (via sciencedaily.com)     Original source 

Electric space propulsion systems use energized atoms to generate thrust. The high-speed beams of ions bump against the graphite surfaces of the thruster, eroding them with each hit, and are the systems' primary lifetime-limiting factor. Researchers used data from low-pressure chamber experiments and large-scale computations to develop a model to better understand the effects of ion erosion on carbon surfaces -- the first step in predicting its failure.

Engineering: Graphene
Published

Novel device enables high-resolution observation of liquid phase dynamic processes at nanoscale      (via sciencedaily.com) 

In situ observation and recording of important liquid-phase electrochemical reactions in energy devices is crucial for the advancement of energy science. A research team has recently developed a novel, tiny device to hold liquid specimens for transmission electron microscopy (TEM) observation, opening the door to directly visualizing and recording complex electrochemical reactions at nanoscale in real-time at high resolution. The research team believes that this innovative method will shed light on strategies for fabricating a powerful research tool for uncovering the mysteries of electrochemical processes in the future.

Engineering: Graphene
Published

Superconductivity switches on and off in 'magic-angle' graphene      (via sciencedaily.com) 

Physicists have found a new way to switch superconductivity on and off in magic-angle graphene. The discovery could lead to ultrafast, energy-efficient superconducting transistors for 'neuromorphic' electronics that operate similarly to the rapid on/off firing of neurons in the human brain.

Chemistry: Thermodynamics Engineering: Graphene
Published

Researchers can 'see' crystals perform their dance moves      (via sciencedaily.com) 

Researchers already knew the atoms in perovskites react favorably to light. Now they've seen precisely how the atoms move when the 2D materials are excited with light. Their study details the first direct measurement of structural dynamics under light-induced excitation in 2D perovskites.

Computer Science: Quantum Computers Engineering: Graphene Offbeat: Computers and Math Physics: Quantum Computing
Published

Scientists observe 'quasiparticles' in classical systems      (via sciencedaily.com) 

Quasiparticles -- long-lived particle-like excitations -- are a cornerstone of quantum physics, with famous examples such as Cooper pairs in superconductivity and, recently, Dirac quasiparticles in graphene. Now, researchers have discovered quasiparticles in a classical system at room temperature: a two-dimensional crystal of particles driven by viscous flow in a microfluidic channel. Coupled by hydrodynamic forces, the particles form stable pairs -- a first example of classical quasiparticles, revealing deep links between quantum and classical dissipative systems.

Engineering: Graphene
Published

Physicists solve mystery of two-dimensional quasicrystal formation from metal oxides      (via sciencedaily.com) 

The structure of two-dimensional titanium oxide brakes-up at high temperatures by adding barium; instead of regular hexagons, rings of four, seven and ten atoms are created that order aperiodically. A team has now solved the riddle of two-dimensional quasicrystal formation from metal oxides.

Energy: Batteries Energy: Technology Engineering: Graphene
Published

Recyclable mobile phone batteries a step closer with rust-busting invention      (via sciencedaily.com) 

Mobile phone batteries with a lifetime up to three times longer than today's technology could be a reality thanks to a recent innovation.

Engineering: Biometric
Published

New DNA biosensor could unlock powerful, low-cost clinical diagnostics      (via sciencedaily.com) 

By flagging disease-associated DNA biomarkers, medical professionals can make early diagnoses and provide personalized treatments, but the typical screening methods can be laborious, expensive or limited in scope. Now, a new biosensor could pave the way to accessible and expansive diagnostics.

Engineering: Graphene
Published

Electronic nose: Sensing the odor molecules on graphene surface layered with self-assembled peptides      (via sciencedaily.com) 

Graphene-based olfactory sensors that can detect odor molecules based on the design of peptide sequences were recently demonstrated. The findings indicated that graphene field-effect transistors (GFETs) functionalized with designable peptides can be used to develop electronic devices that mimic olfactory receptors and emulate the sense of smell by selectively detecting odor molecules.

Engineering: Graphene Engineering: Nanotechnology
Published

Discovery of a new form of carbon called Long-range Ordered Porous Carbon (LOPC)      (via sciencedaily.com) 

The most well-known forms of carbon include graphite and diamond, but there are other more exotic nanoscale allotropes of carbon as well. These include graphene and fullerenes, which are sp2 hybridized carbon with zero (flat-shaped) or positive (sphere-shaped) curvatures. Researchers now report the discovery of a new form of carbon formed by heating fullerenes with lithium nitride.