Chemistry: Inorganic Chemistry Physics: General Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

AI finds the first stars were not alone      (via sciencedaily.com) 

Machine learning and state-of-the-art supernova nucleosynthesis has helped researchers find that the majority of observed second-generation stars in the universe were enriched by multiple supernovae.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Surprisingly simple explanation for the alien comet 'Oumuamua's weird orbit      (via sciencedaily.com) 

When the first interstellar comet ever seen in our solar system was discovered in 2017, one characteristic -- an unexplained acceleration away from the sun -- sparked wild speculation, including that it was an alien spacecraft. An astrochemist found a simpler explanation and tested it with an astronomer: in interstellar space, cosmic rays converted water to hydrogen in the comet's outer layers. Nearing the sun, outgassed hydrogen gave the tiny comet a kick.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New simulation reveals secrets of exotic form of electrons called polarons      (via sciencedaily.com) 

Conditions mapped for the first time of polaron characteristics in 2D materials. TACC's Frontera supercomputer generated quantum mechanical calculations on hexagonal boron nitride system of 30,000 atoms.

Energy: Nuclear Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Neutrinos made by a particle collider detected      (via sciencedaily.com) 

Physicists have detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, which were first spotted in 1956 and play a key role in the process that makes stars burn.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Searching for life with space dust      (via sciencedaily.com) 

Following enormous collisions, such as asteroid impacts, some amount of material from an impacted world may be ejected into space. This material can travel vast distances and for extremely long periods of time. In theory this material could contain direct or indirect signs of life from the host world, such as fossils of microorganisms. And this material could be detectable by humans in the near future, or even now.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Hunting Venus 2.0: Scientists sharpen their sights      (via sciencedaily.com) 

With the first paper compiling all known information about planets like Venus beyond our solar system, scientists are the closest they've ever been to finding an analog of Earth's 'twin.'

Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Galaxy changes classification as jet changes direction      (via sciencedaily.com) 

A team of international astronomers have discovered a galaxy that has changed classification due to unique activity within its core. The galaxy, named PBC J2333.9-2343, was previously classified as a radio galaxy, but the new research has revealed otherwise.

Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: General Space: Structures and Features
Published

Scientists find a common thread linking subatomic color glass condensate and massive black holes      (via sciencedaily.com) 

Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Graphene Engineering: Nanotechnology Engineering: Robotics Research
Published

Mind-control robots a reality?      (via sciencedaily.com) 

Researchers have developed biosensor technology that will allow you to operate devices, such as robots and machines, solely through thought control.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene
Published

Another crystalline layer on crystal surface as a precursor of crystal-to-crystal transition      (via sciencedaily.com) 

Ice surfaces have a thin layer of water below its melting temperature of 0 degrees Celsius. Such premelting phenomenon is important for skating and snowflake growth. Similarly, liquid often crystallizes into a thin layer of crystal on a flat substrate before reaching its freezing temperature, i.e. prefreezing. The thickness of the surface layer usually increases and diverges as approaching the phase transition (such as melting and freezing) temperature. Besides premelting and prefreezing, whether similar surface phenomenon exists as a precursor of a phase transition has rarely been explored. Scientists now propose that a polymorphic crystalline layer may form on a crystal surface before the crystal-crystal phase transition and names it pre-solid-solid transition.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

Nano cut-and-sew: New method for chemically tailoring layered nanomaterials could open pathways to designing 2D materials on demand      (via sciencedaily.com) 

A new process that lets scientists chemically cut apart and stitch together nanoscopic layers of two-dimensional materials -- like a tailor altering a suit -- could be just the tool for designing the technology of a sustainable energy future. Researchers have developed a method for structurally splitting, editing and reconstituting layered materials, called MAX phases and MXenes, with the potential of producing new materials with very unusual compositions and exceptional properties.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

'Terminator zones' on distant planets could harbor life      (via sciencedaily.com) 

In a new study, astronomers describe how extraterrestrial life has the potential to exist on distant exoplanets inside a special area called the 'terminator zone,' which is a ring on planets that have one side that always faces its star and one side that is always dark.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Webb Telescope captures rarely seen prelude to supernova      (via sciencedaily.com) 

The rare sight of a Wolf-Rayet star -- among the most luminous, most massive, and most briefly detectable stars known -- was one of the first observations made by NASA's James Webb Space Telescope in June 2022. Webb shows the star, WR 124, in unprecedented detail with its powerful infrared instruments. The star is 15,000 light-years away in the constellation Sagittarius.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

3D internal structure of rechargeable batteries revealed      (via sciencedaily.com) 

Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.

Chemistry: Organic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

Microscopy: Highest resolution in three dimensions      (via sciencedaily.com) 

Researchers have developed a super-resolution microscopy method for the rapid differentiation of molecular structures in 3D.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features Space: The Solar System
Published

ALMA traces history of water in planet formation back to the interstellar medium      (via sciencedaily.com) 

Observations of water in the disk forming around protostar V883 Ori have unlocked clues about the formation of comets and planetesimals in our own solar system.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

The planet that could end life on Earth      (via sciencedaily.com) 

A terrestrial planet hovering between Mars and Jupiter would be able to push Earth out of the solar system and wipe out life on this planet, according to a recent experiment.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Graphene quantum dots show promise as novel magnetic field sensors      (via sciencedaily.com) 

Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.

Offbeat: Space Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Ultracool dwarf binary stars break records      (via sciencedaily.com) 

Astrophysicists have discovered the tightest ultracool dwarf binary system ever observed. The two stars are so close that it takes them less than one Earth day to revolve around each other. In other words, each star's 'year' lasts just 17 hours.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

AI draws most accurate map of star birthplaces in the Galaxy      (via sciencedaily.com) 

Scientists identified about 140,000 molecular clouds in the Milky Way Galaxy from large-scale data of carbon monoxide molecules, observed in detail by the Nobeyama 45-m radio telescope. Using artificial intelligence, the researchers estimated the distance of each of these molecular clouds to determine their size and mass, successfully mapping the distribution of the molecular clouds in the Galaxy in the most detailed manner to date.