Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Space: Cosmology
Published 'Cosmic lighthouses' that cleared primordial fog identified with JWST



Scientists working with data from NASA's James Webb Space Telescope (JWST) have obtained the first full spectra of some of the earliest starlight in the universe. The images provide the clearest picture yet of very low-mass, newborn galaxies, created less than a billion years after the Big Bang, and suggest the tiny galaxies are central to the cosmic origin story.
Published Quantum films on plastic



Researchers have discovered that thin films of elemental bismuth exhibit the so-called non-linear Hall effect, which could be applied in technologies for the controlled use of terahertz high-frequency signals on electronic chips. Bismuth combines several advantageous properties not found in other systems to date, as the team reports. Particularly: the quantum effect is observed at room temperature. The thin-layer films can be applied even on plastic substrates and could therefore be suitable for modern high-frequency technology applications.
Published Brightest and fastest-growing: Astronomers identify record-breaking quasar



Astronomers have characterized a bright quasar, finding it to be not only the brightest of its kind, but also the most luminous object ever observed. Quasars are the bright cores of distant galaxies and they are powered by supermassive black holes. The black hole in this record-breaking quasar is growing in mass by the equivalent of one Sun per day, making it the fastest-growing black hole to date.
Published Graphene research: Numerous products, no acute dangers found by study



Graphene is an enormously promising material. It consists of a single layer of carbon atoms arranged in a honeycomb pattern and has extraordinary properties: exceptional mechanical strength, flexibility, transparency and outstanding thermal and electrical conductivity. If the already two-dimensional material is spatially restricted even more, for example into a narrow ribbon, controllable quantum effects can be created. This could enable a wide range of applications, from vehicle construction and energy storage to quantum computing.
Published Electrons become fractions of themselves in graphene



Physicists have observed fractional quantum Hall effect in simple pentalayer graphene. The finding could make it easier to develop more robust quantum computers.
Published New non-toxic method for producing high-quality graphene oxide



Researchers have found a new way to synthesize graphene oxide which has significantly fewer defects compared to materials produced by most common method. Similarly good graphene oxide could be synthesized previously only using rather dangerous method involving extremely toxic fuming nitric acid.
Published Fresh meat: New biosensor accurately and efficiently determines meat freshness



Despite the technological advances keeping meat fresh for as long as possible, certain aging processes are unavoidable. Adenosine triphosphate is a molecule produced by breathing and responsible for providing energy to cells. When an animal stops breathing, ATP synthesis also stops, and the existing molecules decompose into acid, diminishing first flavor and then safety. Hypoxanthine and xanthine are intermediate steps in this transition. Assessing their prevalence in meat indicates its freshness.
Published Under pressure -- space exploration in our time



A new paradigm is taking shape in the space industry as the countries and entities accessing space continue to grow and diversify. This dynamic landscape creates both competition and potential for scientific collaboration, as well as the challenges and opportunities of progress.
Published First human trial shows 'wonder' material can be developed safely



A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests.
Published Evidence of geothermal activity within icy dwarf planets



A team found evidence for hydrothermal or metamorphic activity within the icy dwarf planets Eris and Makemake, located in the Kuiper Belt. Methane detected on their surfaces has the tell-tale signs of warm or even hot geochemistry in their rocky cores, which is markedly different than the signature of methane from a comet.
Published Two-dimensional waveguides discovered



Scientists announce the discovery of slab waveguides based on the two-dimensional material hexagonal boron nitride.
Published Sensors made from 'frozen smoke' can detect toxic formaldehyde in homes and offices



Researchers have developed a sensor made from 'frozen smoke' that uses artificial intelligence techniques to detect formaldehyde in real time at concentrations as low as eight parts per billion, far beyond the sensitivity of most indoor air quality sensors.
Published New adhesive tape picks up and sticks down 2D materials as easily as child's play



A research team has developed a tape that can be used to stick two-dimensional (2D) materials to many different surfaces, in an easy and user-friendly way. Their finding will aid research into and boost production of 2D materials for next-generation devices.
Published A long, long time ago in a galaxy not so far away



Employing massive data sets collected through NASA's James Webb Space Telescope, astronomers are unearthing clues to conditions existing in the early universe. The team has catalogued the ages of stars in the Wolf--Lundmark--Melotte (WLM) galaxy, constructing the most detailed picture of it yet, according to the researchers. WLM, a neighbor of the Milky Way, is an active center of star formation that includes ancient stars formed 13 billion years ago.
Published Which came first: Black holes or galaxies?



Black holes not only existed at the dawn of time, they birthed new stars and supercharged galaxy formation, a new analysis of James Webb Space Telescope data suggests.
Published Ultra-sensitive lead detector could significantly improve water quality monitoring



Engineers have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous technologies.
Published Gas on the run -- ALMA spots the shadow of a molecular outflow from a quasar when the Universe was less than one billion years old



Theoretical predictions have been confirmed with the discovery of an outflow of molecular gas from a quasar when the Universe was less than a billion years old.
Published Key dynamics of 2D nanomaterials: View to larger-scale production



A team of researchers mapped out how flecks of 2D materials move in liquid -- knowledge that could help scientists assemble macroscopic-scale materials with the same useful properties as their 2D counterparts.
Published Bright galaxies put dark matter to the test



The earliest galaxies are thought to have formed as the gravitational pull of dark matter, which has been impossible to study directly, slowly drew in enough hydrogen and helium to ignite stars. But astrophysicists now show that after the Big Bang, hydrogen and helium gas bounced at supersonic speeds off dense, slowly moving clumps of cold dark matter. When the gas fell back in millennia later, stars formed all at once, creating small, exceptionally bright galaxies. If models of cold dark matter are correct, the James Webb Space Telescope should be able to find patches of bright galaxies in the early universe, potentially offering the first effective test for theories about dark matter. If it doesn't, scientists have to go back to the drawing board with dark matter.
Published Machine learning guides carbon nanotechnology



Carbon nanostructures could become easier to design and synthesize thanks to a machine learning method that predicts how they grow on metal surfaces. The new approach will make it easier to exploit the unique chemical versatility of carbon nanotechnology.