Showing 20 articles starting at article 141

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Graphene, Space: Cosmology

Return to the site home page

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Supernova encore: Second lensed supernova in a distant galaxy      (via sciencedaily.com)     Original source 

In November 2023, NASA's James Webb Space Telescope observed a massive cluster of galaxies named MACS J0138.0-2155. Through an effect called gravitational lensing, first predicted by Albert Einstein, a distant galaxy named MRG-M0138 appears warped by the powerful gravity of the intervening galaxy cluster. In addition to warping and magnifying the distant galaxy, the gravitational lensing effect caused by MACS J0138 produces five different images of MRG-M0138.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Cosmic lights in the forest      (via sciencedaily.com)     Original source 

Supercomputer helped astronomers develop PRIYA, the largest suite of hydrodynamic simulations yet made of large-scale structure in the universe.

Chemistry: Inorganic Chemistry Energy: Technology Engineering: Graphene
Published

An electrifying improvement in copper conductivity      (via sciencedaily.com)     Original source 

A newly developed, highly conductive copper wire could find applications in the electric grid, as well as in homes and businesses. The finding defies what's been thought about how metals conduct electricity.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Scientists measure the distance to stars by their music      (via sciencedaily.com)     Original source 

A team of astronomers has used asteroseismology, or the study of stellar oscillations, to accurately measure the distance of stars from the Earth. Their research examined thousands of stars and checked the measurements taken during the Gaia mission to study the near Universe.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics
Published

Ultrafast lasers map electrons 'going ballistic' in graphene, with implications for next-gen electronic devices      (via sciencedaily.com)     Original source 

Research reveals the ballistic movement of electrons in graphene in real time. The observations could lead to breakthroughs in governing electrons in semiconductors, fundamental components in most information and energy technology.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

New red galaxies turn out to be already known blue galaxies      (via sciencedaily.com)     Original source 

Not all discoveries turn out to be actual new discoveries. This was the case for the extremely red objects (EROs) found in James Webb Space Telescope (JWST) data. Analysis shows that they are very similar to blue-excess dust obscured galaxies (BluDOGs) already reported in Subaru Telescope data.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Astronomers discover first population of binary stripped stars      (via sciencedaily.com)     Original source 

Astronomers have discovered a population of massive stars that have been stripped of their hydrogen envelopes by their companions in binary systems. The findings shed light on the hot helium stars that are believed to be the origins of hydrogen-poor core-collapse supernovae and neutron star mergers.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Reaching for the (invisible) stars      (via sciencedaily.com)     Original source 

Supernovae -- stellar explosions as bright as an entire galaxy -- have fascinated us since time immemorial. Yet, there are more hydrogen-poor supernovae than astrophysicists can explain. Now, scientists may have found the missing precursor star population.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Unexpected chemistry reveals cosmic star factories' secrets      (via sciencedaily.com)     Original source 

Two galaxies in the early universe, which contain extremely productive star factories, have been studied by a team of scientists. Using powerful telescopes to split the galaxies' light into individual colors, the scientists were amazed to discover light from many different molecules -- more than ever before at such distances. Studies like this could revolutionize our understanding of the lives of the most active galaxies when the universe was young, the researchers believe.

Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Stellar winds regulate growth of galaxies      (via sciencedaily.com)     Original source 

Galactic winds enable the exchange of matter between galaxies and their surroundings. In this way, they limit the growth of galaxies, that is, their star formation rate. Although this had already been observed in the local universe, an international research team has just revealed the existence of the phenomenon in galaxies which are more than 7 billion years old and actively forming stars, the category to which most galaxies belong. The team's findings thus show this is a universal process.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene Physics: Optics
Published

Chemists create organic molecules in a rainbow of colors      (via sciencedaily.com)     Original source 

Chemists have now come up with a way to make molecules known as acenes more stable, allowing them to synthesize acenes of varying lengths. Using their new approach, they were able to build molecules that emit red, orange, yellow, green, or blue light, which could make acenes easier to deploy in a variety of applications.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Astronomers determine the age of three mysterious baby stars at the heart of the Milky Way      (via sciencedaily.com)     Original source 

Through analysis of high-resolution data from a ten-meter telescope in Hawaii, researchers have succeeded in generating new knowledge about three stars at the very heart of the Milky Way. The stars proved to be unusually young with a puzzling chemical composition that surprised the researchers.

Chemistry: General Engineering: Graphene Geoscience: Earthquakes Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Recycling concrete using carbon can reduce emissions and waste      (via sciencedaily.com)     Original source 

Amid the rubble of large-sale earthquake, war or other disaster -- and as ageing buildings and infrastructure are replaced -- mountains of concrete are often taken to landfill or pounded into rubble for roads. For a more sustainable approach, experts are developing a 'value add' for old broken concrete to 'upcycling' coarse aggregate to produce a strong, durable and workable concrete using a small amount of a secret ingredient -- graphene.

Engineering: Graphene Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

Tiny electromagnets made of ultra-thin carbon      (via sciencedaily.com)     Original source 

Graphene, that is extremely thin carbon, is considered a true miracle material. An international research team has now added another facet to its diverse properties with new experiments: Experts fired short terahertz pulses at micrometer-sized discs of graphene, which briefly turned these minuscule objects into surprisingly strong magnets. This discovery may prove useful for developing future magnetic switches and storage devices.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Ghostlike dusty galaxy reappears in James Webb Space Telescope image      (via sciencedaily.com)     Original source 

Astronomers studying images from the James Webb Space Telescope have identified an object as a 'dusty star-forming galaxy' from nearly 1 billion years after the Big Bang. They have also discovered more than a dozen additional candidates, suggesting these galaxies might be three to 10 times as common as expected. If that conclusion is confirmed, it suggests the early universe was much dustier than previously thought.

Offbeat: General Offbeat: Space Space: Astrophysics Space: Cosmology Space: Exploration Space: General
Published

A new possible explanation for the Hubble tension      (via sciencedaily.com)     Original source 

The universe is expanding. How fast it does so is described by the so-called Hubble-Lemaitre constant. But there is a dispute about how big this constant actually is: Different measurement methods provide contradictory values. This so-called 'Hubble tension' poses a puzzle for cosmologists. Researchers are now proposing a new solution: Using an alternative theory of gravity, the discrepancy in the measured values can be easily explained -- the Hubble tension disappears.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Building blocks for life could have formed near new stars and planets      (via sciencedaily.com)     Original source 

While life on Earth is relatively new, geologically speaking, the ingredients that combined to form it might be much older than once thought. The simplest amino acid, carbamic acid, could have formed alongside stars or planets within interstellar ices. The findings could be used to train deep space instruments like the James Webb Space Telescope to search for prebiotic molecules in distant, star-forming regions of the universe.

Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

New way of searching for dark matter      (via sciencedaily.com)     Original source 

Wondering whether whether Dark Matter particles actually are produced inside a jet of standard model particles, led researchers to explore a new detector signature known as semi-visible jets, which scientists never looked at before.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

NASA's Webb reveals new features in heart of Milky Way      (via sciencedaily.com)     Original source 

The latest image from NASA's James Webb Space Telescope shows a portion of the dense center of our galaxy in unprecedented detail, including never-before-seen features astronomers have yet to explain. The star-forming region, named Sagittarius C (Sgr C), is about 300 light-years from the Milky Way's central supermassive black hole, Sagittarius A*.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Dwarf galaxies use 10-million-year quiet period to churn out stars      (via sciencedaily.com)     Original source 

If you look at massive galaxies teeming with stars, you might be forgiven in thinking they are star factories, churning out brilliant balls of gas. But actually, less evolved dwarf galaxies have bigger regions of star factories, with higher rates of star formation. Now, University of Michigan researchers have discovered the reason underlying this: These galaxies enjoy a 10-million-year delay in blowing out the gas cluttering up their environments. Star-forming regions are able to hang on to their gas and dust, allowing more stars to coalesce and evolve. In these relatively pristine dwarf galaxies, massive stars--stars about 20 to 200 times the mass of our sun--collapse into black holes instead of exploding as supernovae. But in more evolved, polluted galaxies, like our Milky Way, they are more likely to explode, thereby generating a collective superwind. Gas and dust get blasted out of the galaxy, and star formation quickly stops.