Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Space: Cosmology
Published Twisted science: New quantum ruler to explore exotic matter



Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.
Published New 'Assembly Theory' unifies physics and biology to explain evolution and complexity



An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature. This new work on 'Assembly Theory' represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe.
Published Graphene oxide reduces the toxicity of Alzheimer's proteins



A probable early driver of Alzheimer's disease is the accumulation of molecules called amyloid peptides. These cause cell death, and are commonly found in the brains of Alzheimer’s patients. Researchers have now shown that yeast cells that accumulate these misfolded amyloid peptides can recover after being treated with graphene oxide nanoflakes.
Published Bursts of star formation explain mysterious brightness at cosmic dawn



In the James Webb Space Telescope’s (JWST) first images of the universe’s earliest galaxies, the young galaxies appear too bright, too massive and too mature to have formed so soon after the Big Bang. Using new simulations, a team of astrophysicists now has discovered that these galaxies likely are not so massive after all. Although a galaxy’s brightness is typically determined by its mass, the new findings suggest that less massive galaxies can glow just as brightly from irregular, brilliant bursts of star formation.
Published Colliding neutron stars provide a new way to measure the expansion of the Universe



In recent years, astronomy has seen itself in a bit of crisis: Although we know that the Universe expands, and although we know approximately how fast, the two primary ways to measure this expansion do not agree. Now astrophysicists suggest a novel method which may help resolve this tension.
Published Researchers dynamically tune friction in graphene



The friction on a graphene surface can be dynamically tuned using external electric fields, according to researchers.
Published Down goes antimatter! Gravity's effect on matter's elusive twin is revealed


For the first time, in a unique laboratory experiment at CERN, researchers have observed individual atoms of antihydrogen fall under the effects of gravity. In confirming antimatter and regular matter are gravitationally attracted, the finding rules out gravitational repulsion as the reason why antimatter is largely missing from the observable universe.
Published Hidden supermassive black holes reveal their secrets through radio signals


Astronomers have found a striking link between the amount of dust surrounding a supermassive black hole and the strength of the radio emission produced in extremely bright galaxies.
Published Efficient fuel-molecule sieving using graphene


A research team has successfully developed a new method that can prevent the crossover of large fuel molecules and suppress the degradation of electrodes in advanced fuel cell technology using methanol or formic acid. The successful sieving of the fuel molecules is achieved via selective proton transfers due to steric hindrance on holey graphene sheets that have chemical functionalization and act as proton-exchange membranes.
Published Astronomers discover newborn galaxies with the James Webb Space Telescope


With the launch of the James Webb Space Telescope, astronomers are now able to peer so far back in time that we are approaching the epoch where we think that the first galaxies were created. Throughout most of the history of the Universe, galaxies seemingly tend to follow a tight relation between how many stars they have formed, and how many heavy elements they have formed. But for the first time we now see signs that this relation between the amount of stars and elements does not hold for the earliest galaxies. The reason is likely that these galaxies simply are in the process of being created, and have not yet had the time to create the heavy elements.
Published Astronomers find abundance of Milky Way-like Galaxies in early Universe, rewriting cosmic evolution theories


Galaxies from the early Universe are more like our own Milky Way than previously thought, flipping the entire narrative of how scientists think about structure formation in the Universe, according to new research.
Published Shh! Quiet cables set to help reveal rare physics events


Newly developed ultra-low radiation cables reduce background noise for neutrino and dark matter detectors.
Published One-atom-thick ribbons could improve batteries, solar cells and sensors


Researchers created nanoribbons made of phosphorus and tiny amounts of arsenic, which they found were able to conduct electricity at temperatures above -140 degrees Celsius, while retaining the highly useful properties of the phosphorus-only ribbons.
Published Making contact: Researchers wire up individual graphene nanoribbons


Researchers have developed a method of 'wiring up' graphene nanoribbons (GNRs), a class of one-dimensional materials that are of interest in the scaling of microelectronic devices. Using a direct-write scanning tunneling microscopy (STM) based process, the nanometer-scale metal contacts were fabricated on individual GNRs and could control the electronic character of the GNRs. The researchers say that this is the first demonstration of making metal contacts to specific GNRs with certainty and that those contacts induce device functionality needed for transistor function.
Published Tag team of the James Webb Space Telescope and ALMA captures the core of the most distant galaxy protocluster


An international research team has used the James Webb Space Telescope and the Atacama Large Millimeter/submillimeter Array to observe the most distant galaxy protocluster to date, 13.14 billion light-years away. The team has successfully captured the 'core region' of the galaxy protocluster, which corresponds to a metropolitan area with a particularly high number density of galaxies. The team has revealed that many galaxies are concentrated in a small area and that the growth of galaxies is accelerated. Furthermore, the team used simulations to predict the future of the metropolitan area and found that the region will merge into one larger galaxy within tens of millions of years. These results are expected to provide important clues regarding the birth and growth of galaxies.
Published New Si-based photocatalyst enables efficient solar-driven hydrogen production and biomass refinery


A research team has achieved a significant breakthrough in the development of a hybrid silicon photocatalyst.
Published New recipes for origin of life may point way to distant, inhabited planets



Life on a faraway planet -- if it's out there -- might not look anything like life on Earth. But there are only so many chemical ingredients in the universe's pantry, and only so many ways to mix them. Scientists have now exploited those limitations to write a cookbook of hundreds of chemical recipes with the potential to give rise to life. Their ingredient list could focus the search for life elsewhere in the universe by pointing out the most likely conditions -- planetary versions of mixing techniques, oven temperatures and baking times -- for the recipes to come together.
Published Brilliant galaxies of early universe


Scientists have used data from the James Webb Space Telescope (JWST) as part of the Cosmic Evolution Early Release Science (CEERS) Survey to change the way we think about the universe and its distant galaxies. Astronomers authored a paper confirming very bright galaxies in the early universe, while also disproving the identification of what would have been the most distant galaxy ever found.
Published Carbon atoms coming together in space



Lab-based studies reveal how carbon atoms diffuse on the surface of interstellar ice grains to form complex organic compounds, crucial to reveal the chemical complexity in the universe.
Published Making hydrogen from waste plastic could pay for itself


Researchers have found a way to harvest hydrogen from plastic waste using a low-emissions method that generates graphene as a by-product, which could help offset production costs.