Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Environmental: Wildfires
Published Research supports use of managed and prescribed fires to reduce fire severity



Scientists found that fires in America's dry conifer forests are burning hotter and killing more trees today than in previous centuries. The main culprit? Paradoxically, a lack of fires.
Published Washable, transparent, and flexible OLED with MXene nanotechnology?


Transparent and flexible displays, which have received a lot of attention in various fields including automobile displays, bio-healthcare, military, and fashion, are in fact known to break easily when experiencing small deformations. To solve this problem, active research is being conducted on many transparent and flexible conductive materials such as carbon nanotubes, graphene, silver nanowires, and conductive polymers.
Published Picturing where wildlands and people meet at a global scale



Researchers have created the first tool to map and visualize the areas where human settlements and nature meet on a global scale. The tool could improve responses to environmental conflicts like wildfires, the spread of zoonotic diseases and loss of ecosystem biodiversity.
Published Understanding the many different ways animals are evolving in response to fire could help conservation efforts



In our modern era of larger, more destructive, and longer-lasting fires -- called the Pyrocene -- plants and animals are evolving quickly to survive. By synthesizing the wide body of research about rapid animal evolution in response to fire, a multidisciplinary team of ecology experts hopes to leverage what we already know to help foster evolution-informed conservation plans. In this way, they suggest, we can try to harness the ways in which fire impacts animals to protect vulnerable species -- working with evolution instead of against it.
Published Researchers put a new twist on graphite



Researchers report that it is possible to imbue graphite -- the bulk, 3D material found in No. 2 pencils -- with physical properties similar to graphite's 2D counterpart, graphene. Not only was this breakthrough unexpected, the team also believes its approach could be used to test whether similar types of bulk materials can also take on 2D-like properties. If so, 2D sheets won't be the only source for scientists to fuel technological revolutions. Bulk, 3D materials could be just as useful.
Published Hidden cameras spot wildlife returning home after 2018 megafire



Researchers analyzed more than 500,000 motion-sensor camera trap images taken at a Northern California reserve in the years before and after the Mendocino Complex Fire to understand how the blaze impacted small- and medium-sized mammals. The study is one of the first to compare wildlife observations made before and after a megafire, and is also one of a limited number of studies to focus on the impacts of megafires on California's oak woodlands.
Published What causes mudslides and floods after wildfires? Hint: It's not what scientists thought



Scientists once assumed that flooding and mudslides after wildfires were linked to the waxy coating that builds up on charred soil, preventing water absorption. Researchers found that water flow came from absorbed water in both burnt and unburnt areas, suggesting that water was, in fact, being absorbed into burnt ground. The discovery provides valuable insights into where and when potential flooding and mudslides may occur and how landscapes recover after a wildfire.
Published Fungi blaze a trail to fireproof cladding



Scientists have shown it's possible to grow fungi in thin sheets that could be used for fire-retardant cladding or even a new kind of fungal fashion.
Published Addressing justice in wildfire risk management



The unequal distribution of wildfire risk in our society is influenced by various factors, such as social vulnerabilities and intersecting forms of inequality, including gender, age, ethnicity, or disability. A new article calls for more integrated and inclusive wildfire risk management approaches and proposes a novel framework mapping different justice aspects.
Published A bright future in eco-friendly light devices, just add dendrimers, cellulose, and graphene



Researchers have developed a light-emitting electrochemical cell using dendrimers, a material gaining popularity in the industry. Moreover, the team found that using biomass derived cellulose acetate as the electrolyte retains the cell's long-life span. Combined with a graphene electrode, the cell has the potential to light the way for a future of eco-friendly and flexible light-emitting devices.
Published Three things to know: Climate change's impact on extreme-weather events



Researchers found that the effects of climate change on the intensity, frequency, and duration of extreme weather events, like wildfires, could lead to massive increases in all three.
Published 'Electronic skin' from bio-friendly materials can track human vital signs with ultrahigh precision



Researchers have used materials inspired by molecular gastronomy to create smart wearables that surpassed similar devices in terms of strain sensitivity. They integrated graphene into seaweed to create nanocomposite microcapsules for highly tunable and sustainable epidermal electronics. When assembled into networks, the tiny capsules can record muscular, breathing, pulse, and blood pressure measurements in real-time with ultrahigh precision.
Published Wildfire smoke downwind affects health, wealth, mortality



Smoke particulates from wildfires could cause between 4,000 and 9,000 premature deaths and cost between $36 to $82 billion per year in the United States, according to new research.
Published Terahertz-to-visible light conversion for future telecommunications



A study demonstrates that graphene-based materials can be used to efficiently convert high-frequency signals into visible light, and that this mechanism is ultrafast and tunable. These outcomes open the path to exciting applications in near-future information and communication technologies.
Published Shining potential of missing atoms



Single photons have applications in quantum computation, information networks, and sensors, and these can be emitted by defects in the atomically thin insulator hexagonal boron nitride (hBN). Missing nitrogen atoms have been suggested to be the atomic structure responsible for this activity, but it is difficult to controllably remove them. A team has now shown that single atoms can be kicked out using a scanning transmission electron microscope under ultra-high vacuum.
Published Aluminium-ion batteries with improved storage capacity



Scientists develop positive electrode material using an organic redox polymer based on phenothiazine. Aluminium-ion batteries containing this material stored an unprecedented 167 milliampere hours per gram, outperforming batteries using graphite as electrode material. Aluminium-ion batteries are considered a promising alternative to conventional batteries that use scarce raw materials such as lithium.
Published Unveiling the nanoscale frontier: innovating with nanoporous model electrodes



Researchers have introduced a next-generation model membrane electrode that promises to revolutionize fundamental electrochemical research.
Published Producing large, clean 2D materials made easy



An international team of surface scientists has now developed a simple method to produce large and very clean 2D samples from a range of materials using three different substrates.
Published Wildfire spread risk increases where trees, shrubs replace grasses



A new study found that as woody plants like shrubs and trees replace herbaceous plants like grasses, spot fires can occur farther away from the original fire perimeter.
Published African smoke over the Amazon



Up to two-thirds of the soot above the central Amazon rainforest originates in Africa. Researchers differentiate soot particles using their relative properties and attribute them to their respective points of origin. They found that bush fires and burning savannah in the north and south of Africa make a substantial contribution to air pollution in the central Amazon all year round, thereby playing an important role in the earth radiation budget and water cycle. This is caused by the efficient transatlantic transport of particles through the atmosphere.