Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Geoscience: Volcanoes
Published Better microelectronics from coal



Coal is an abundant resource in the United States that has, unfortunately, contributed to climate change through its use as a fossil fuel. As the country transitions to other means of energy production, it will be important to consider and reevaluate coal's economic role. Coal may actually play a vital role in next-generation electronic devices.
Published Laser-driving a 2D material



Engineers pair vibrating particles, called phonons, with particles of light, called photons, to enhance the nonlinear optical properties of hexagonal boron nitride.
Published An electrifying improvement in copper conductivity



A newly developed, highly conductive copper wire could find applications in the electric grid, as well as in homes and businesses. The finding defies what's been thought about how metals conduct electricity.
Published Ultrafast lasers map electrons 'going ballistic' in graphene, with implications for next-gen electronic devices



Research reveals the ballistic movement of electrons in graphene in real time. The observations could lead to breakthroughs in governing electrons in semiconductors, fundamental components in most information and energy technology.
Published Chemists create organic molecules in a rainbow of colors



Chemists have now come up with a way to make molecules known as acenes more stable, allowing them to synthesize acenes of varying lengths. Using their new approach, they were able to build molecules that emit red, orange, yellow, green, or blue light, which could make acenes easier to deploy in a variety of applications.
Published Recycling concrete using carbon can reduce emissions and waste



Amid the rubble of large-sale earthquake, war or other disaster -- and as ageing buildings and infrastructure are replaced -- mountains of concrete are often taken to landfill or pounded into rubble for roads. For a more sustainable approach, experts are developing a 'value add' for old broken concrete to 'upcycling' coarse aggregate to produce a strong, durable and workable concrete using a small amount of a secret ingredient -- graphene.
Published Tiny electromagnets made of ultra-thin carbon



Graphene, that is extremely thin carbon, is considered a true miracle material. An international research team has now added another facet to its diverse properties with new experiments: Experts fired short terahertz pulses at micrometer-sized discs of graphene, which briefly turned these minuscule objects into surprisingly strong magnets. This discovery may prove useful for developing future magnetic switches and storage devices.
Published Massive 2022 eruption reduced ozone layer levels



The Hunga Tonga-Hunga Ha'apai volcano changed the chemistry and dynamics of the stratosphere in the year following the eruption, leading to unprecedented losses in the ozone layer of up to 7% over large areas of the Southern Hemisphere.
Published Riddle of Kondo effect solved in ultimately thin wires



A research team has now directly measured the so-called Kondo effect, which governs the behavior of magnetic atoms surrounded by a sea of electrons: New observations with a scanning tunneling microscope reveal the effect in one-dimensional wires floating on graphene.
Published Template for success: Shaping hard carbon electrodes for next-generation batteries



Sodium- and potassium-ion batteries are promising next-generation alternatives to the ubiquitous lithium-ion batteries (LIBs). However, their energy density still lags behind that of LIBs. To tackle this issue, researchers explored an innovative strategy to turn hard carbon into an excellent negative electrode material. Using inorganic zinc-based compounds as a template during synthesis, they prepared nanostructured hard carbon, which exhibits excellent performance in both alternative batteries.
Published Researchers discover new ultra strong material for microchip sensors



Researchers have unveiled a remarkable new material with potential to impact the world of material science: amorphous silicon carbide (a-SiC). Beyond its exceptional strength, this material demonstrates mechanical properties crucial for vibration isolation on a microchip. Amorphous silicon carbide is therefore particularly suitable for making ultra-sensitive microchip sensors.
Published Human emissions increased mercury in the atmosphere sevenfold



Researchers estimated that before humans started pumping mercury into the atmosphere, it contained on average about 580 megagrams of mercury. However, in 2015, independent research that looked at all available atmospheric measurements estimated the atmospheric mercury reservoir was about 4,000 Mg -- nearly 7 times larger than the natural condition estimated in this study.
Published Mystery of volcanic tsunami solved after 373 years



The explosion of the underwater volcano Kolumbo in the Aegean Sea in 1650 triggered a destructive tsunami that was described by historical eye witnesses. A group of researchers has now surveyed Kolumbo's underwater crater with modern imaging technology and reconstructed the historical events. They found that the eyewitness accounts of the natural disaster can only be described by a combination of a landslide followed by an explosive eruption.
Published Researchers demonstrate a high-speed electrical readout method for graphene nanodevices



Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices.
Published California supervolcano is cooling off but may still cause quakes



New high-resolution images of the Long Valley Caldera indicate that the subsurface environment is cooling off, releasing gas and fluids that contribute to seismic activity.
Published From a five-layer graphene sandwich, a rare electronic state emerges



When stacked in five layers in a rhombohedral pattern, graphene takes on a rare 'multiferroic' state, exhibiting both unconventional magnetism and an exotic electronic behavior known as ferro-valleytricity.
Published Scientists discover 'flipping' layers in heterostructures to cause changes in their properties



Transition metal dichalcogenide (TMD) semiconductors are special materials that have long fascinated researchers with their unique properties. For one, they are flat, one-atom-thick two-dimensional (2D) materials similar to that of graphene. They are compounds that contain different combinations of the transition metal group (e.g., molybdenum, tungsten) and chalcogen elements (e.g., sulfur, selenium, tellurium).
Published Twisted science: New quantum ruler to explore exotic matter



Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.
Published Volcanic ash effects on Earth systems



To bridge the knowledge gap between volcanologists and atmospheric scientists working on climate change and observing global systems, researchers have characterized volcanic ash samples from many explosive eruptions of a broad compositional range.
Published Graphene oxide reduces the toxicity of Alzheimer's proteins



A probable early driver of Alzheimer's disease is the accumulation of molecules called amyloid peptides. These cause cell death, and are commonly found in the brains of Alzheimer’s patients. Researchers have now shown that yeast cells that accumulate these misfolded amyloid peptides can recover after being treated with graphene oxide nanoflakes.