Showing 20 articles starting at article 101

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Graphene, Geoscience: Earthquakes

Return to the site home page

Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geography Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology
Published

Some of today's earthquakes may be aftershocks from quakes in the 1800s      (via sciencedaily.com)     Original source 

In the 1800s, some of the strongest earthquakes in recorded U.S. history struck North America's continental interior. Almost two centuries later, the central and eastern United States may still be experiencing aftershocks from those events, a new study finds.

Chemistry: General Energy: Batteries Engineering: Graphene Engineering: Nanotechnology
Published

Template for success: Shaping hard carbon electrodes for next-generation batteries      (via sciencedaily.com)     Original source 

Sodium- and potassium-ion batteries are promising next-generation alternatives to the ubiquitous lithium-ion batteries (LIBs). However, their energy density still lags behind that of LIBs. To tackle this issue, researchers explored an innovative strategy to turn hard carbon into an excellent negative electrode material. Using inorganic zinc-based compounds as a template during synthesis, they prepared nanostructured hard carbon, which exhibits excellent performance in both alternative batteries.       

Geoscience: Earthquakes Geoscience: Geography Geoscience: Landslides
Published

New dates for landslides reveal past Seattle fault earthquakes      (via sciencedaily.com)     Original source 

New maps of more than 1,000 deep-seated landslides in the Puget Lowlands of Washington State provide evidence of the last major earthquake along the Seattle Fault about 1,100 years ago -- and may also hold traces of older earthquakes along the fault.

Chemistry: Biochemistry Engineering: Graphene Engineering: Nanotechnology
Published

Researchers discover new ultra strong material for microchip sensors      (via sciencedaily.com)     Original source 

Researchers have unveiled a remarkable new material with potential to impact the world of material science: amorphous silicon carbide (a-SiC). Beyond its exceptional strength, this material demonstrates mechanical properties crucial for vibration isolation on a microchip. Amorphous silicon carbide is therefore particularly suitable for making ultra-sensitive microchip sensors.

Geoscience: Earthquakes Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology
Published

Hebrew prayer book fills gap in Italian earthquake history      (via sciencedaily.com)     Original source 

The chance discovery of a note written in a 15th century Hebrew prayer book fills an important gap in the historical Italian earthquake record, offering a brief glimpse of a previously unknown earthquake affecting the Marche region in the central Apennines.  

Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers demonstrate a high-speed electrical readout method for graphene nanodevices      (via sciencedaily.com)     Original source 

Graphene is often referred to as a wonder material for its advantageous qualities. But its application in quantum computers, while promising, is stymied by the challenge of getting accurate measurements of quantum bit states with existing techniques. Now, researchers have developed design guidelines that enable radio-frequency reflectometry to achieve high-speed electrical readouts of graphene nanodevices. 

Environmental: General Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geology Geoscience: Volcanoes
Published

California supervolcano is cooling off but may still cause quakes      (via sciencedaily.com)     Original source 

New high-resolution images of the Long Valley Caldera indicate that the subsurface environment is cooling off, releasing gas and fluids that contribute to seismic activity.

Chemistry: Biochemistry Energy: Technology Engineering: Graphene Physics: General
Published

From a five-layer graphene sandwich, a rare electronic state emerges      (via sciencedaily.com)     Original source 

When stacked in five layers in a rhombohedral pattern, graphene takes on a rare 'multiferroic' state, exhibiting both unconventional magnetism and an exotic electronic behavior known as ferro-valleytricity.

Chemistry: Biochemistry Geoscience: Earth Science Geoscience: Earthquakes
Published

Researchers test seafloor fiber optic cable as an earthquake early warning system      (via sciencedaily.com)     Original source 

One of the biggest challenges for earthquake early warning systems (EEW) is the lack of seismic stations located offshore of heavily populated coastlines, where some of the world's most seismically active regions are located. In a new study, researchers show how unused telecommunications fiber optic cable can be transformed for offshore EEW.

Engineering: Graphene Physics: General
Published

Scientists discover 'flipping' layers in heterostructures to cause changes in their properties      (via sciencedaily.com)     Original source 

Transition metal dichalcogenide (TMD) semiconductors are special materials that have long fascinated researchers with their unique properties. For one, they are flat, one-atom-thick two-dimensional (2D) materials similar to that of graphene. They are compounds that contain different combinations of the transition metal group (e.g., molybdenum, tungsten) and chalcogen elements (e.g., sulfur, selenium, tellurium).

Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geography Geoscience: Geology Paleontology: General
Published

Plate tectonic surprise: Geologist unexpectedly finds remnants of a lost mega-plate      (via sciencedaily.com)     Original source 

Geologists have reconstructed a massive and previously unknown tectonic plate that was once one-quarter the size of the Pacific Ocean. The team had predicted its existence over 10 years ago based on fragments of old tectonic plates found deep in the Earth’s mantle. To the lead researchers surprise, she found that oceanic remnants on northern Borneo must have belonged to the long-suspected plate, which scientists have named Pontus. She has now reconstructed the entire plate in its full glory.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Twisted science: New quantum ruler to explore exotic matter      (via sciencedaily.com)     Original source 

Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.   

Geoscience: Earth Science Geoscience: Earthquakes
Published

AI-driven earthquake forecasting shows promise in trials      (via sciencedaily.com)     Original source 

A new attempt to predict earthquakes has raised hopes that artificial intelligence could one day be used to limit earthquakes’ impact on lives and economies. The AI algorithm correctly predicted 70% of earthquakes a week before they happened during a seven-month trial in China. The system is limited because the AI needs an extensive database and years of seismic recordings to train itself on, but researchers said the effort is nonetheless a milestone for AI-driven earthquake forecasting. Researchers will soon begin testing the system at other locations.

Environmental: Water Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geography Geoscience: Geology Geoscience: Oceanography
Published

Discovery of massive undersea water reservoir could explain New Zealand's mysterious slow earthquakes      (via sciencedaily.com)     Original source 

Researchers working to image New Zealand's Hikurangi earthquake fault have uncovered a sea's worth of water buried in the Earth's crust. The water was carried down by eroding volcanic rocks and is believed to be dampening the earthquake fault, allowing it to release most of the pent-up tectonic stress through harmless slow slip earthquakes.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

Graphene oxide reduces the toxicity of Alzheimer's proteins      (via sciencedaily.com)     Original source 

A probable early driver of Alzheimer's disease is the accumulation of molecules called amyloid peptides. These cause cell death, and are commonly found in the brains of Alzheimer’s patients. Researchers have now shown that yeast cells that accumulate these misfolded amyloid peptides can recover after being treated with graphene oxide nanoflakes.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Engineering: Graphene Engineering: Nanotechnology
Published

Researchers dynamically tune friction in graphene      (via sciencedaily.com)     Original source 

The friction on a graphene surface can be dynamically tuned using external electric fields, according to researchers.

Environmental: General Geoscience: Earthquakes Geoscience: Environmental Issues
Published

Tree rings reveal a new kind of earthquake threat to the Pacific Northwest, US      (via sciencedaily.com)     Original source 

Tree rings reveal a new kind of earthquake threat to the Pacific Northwest. These findings could have implications for seismic preparedness measures in the region.

Environmental: Water Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Geology
Published

Exploring the effect of water on seismic wave attenuation in the upper mantle      (via sciencedaily.com)     Original source 

The mechanism facilitating the smooth movement of the oceanic lithosphere over the underlying asthenosphere (upper mantle) remains poorly understood. Recently, researchers from Japan investigated the effect of water on the seismic properties of olivine rocks, finding that water retention in the asthenosphere can induce sharp drops in shear wave velocity. This also explained other seismic changes observed at the lithosphere-asthenosphere boundary. These findings provide invaluable insights into the diverse seismic activities on Earth.

Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Engineering: Graphene
Published

Efficient fuel-molecule sieving using graphene      (via sciencedaily.com) 

A research team has successfully developed a new method that can prevent the crossover of large fuel molecules and suppress the degradation of electrodes in advanced fuel cell technology using methanol or formic acid. The successful sieving of the fuel molecules is achieved via selective proton transfers due to steric hindrance on holey graphene sheets that have chemical functionalization and act as proton-exchange membranes.