Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Geoscience: Earthquakes
Published Estimating the energy of past earthquakes from brecciation in a fault zone



In the same way that the number of rings in a tree can tell us its age, the characteristics of rocks such as breccia can tell us about the history of a region. The breccia around Ichinokawa Mine (located in Ehime prefecture) are of particular interest, as the mine is located south of the Median Tectonic Line. Researchers uncovered how breccia can provide valuable evidence to estimate the energy of past earthquakes in the area.
Published Cascadia Subduction Zone, one of Earth's top hazards, comes into sharper focus



A new study has produced the first comprehensive survey of the many complex structures beneath the seafloor in the Cascadia Subduction Zone, off British Columbia, Washington, Oregon and California. It is providing scientists with key insights into how future disasters may unfold.
Published Breaking ground: Could geometry offer a new explanation for why earthquakes happen?



Researchers are adding a new wrinkle to a long-held belief about what causes earthquakes in the first place.
Published Towards next-gen functional materials: direct observation of electron transfer in solids



Nanoscale electron transfer (ET) in solids is fundamental to the development of multifunctional materials. However, ET in solids is not yet clearly understood. Now, researchers achieved a direct observation of solid-state ET through X-ray crystal analysis by fabricating a novel double-walled non-covalent crystalline nanotube, which can absorb electron donor molecules and maintain its crystalline structure during ET. This innovative approach can lead to the design of novel functional materials soon.
Published Safeguarding urban infrastructure from subsidence and liquefaction risks



During an earthquake, soil can weaken through subsidence and liquefaction. These processes can cause buildings to collapse as the soil becomes unable to support their weight. Researchers have now developed a model that predicts soil-bearing strength and thickness to identify stable construction sites and reduce structural risks. Additionally, the model can also predict other soil conditions in real-time and function as an early-warning system to identify potential hazards.
Published Graphene gets cleaned up



Engineers establish the link between oxygen and graphene quality and present an oxygen-free chemical vapor deposition method (OF-CVD) that can reproducibly create high-quality samples for large-scale production. The graphene they synthesized with their new method proved nearly identical to exfoliated samples and was capable of producing the fractional quantum Hall effect.
Published Understanding the mechanisms for local amplification of 2024 tsunamis in Iida Bay



Researchers uncover the unique mechanisms that resulted in severe tsunamis in Iida Bay caused by the 2024 Noto Peninsula Earthquake. The recent tsunamis in Iida Bay were locally amplified due to various factors, including ocean floor topology, the shape of the coastline, the location of coastal facilities, and seismic mechanisms associated with earthquakes, report scientists.
Published 'Fossilizing' cracks in infrastructure creates sealing that can even survive earthquakes



In a new study, a team of researchers used research on fossilizing techniques to create a new method for sealing cracks and fractures in rocks and bedrock using a 'concretion-forming resin'. This innovative technique has applications in a wide range of industries, from tunnel construction to long-term underground storage of hazardous materials.
Published Scientists develop new battery-free lactic acid sensor



Scientists have created a new type of chemosensor (demonstrated for lactic acid sensing) which functions with electricity but without the need for reference electrodes or battery power.
Published Highly sensitive fiber optic gyroscope senses rotational ground motion around active volcano



Researchers have built a prototype fiber optic gyroscope for high resolution, real-time monitoring of ground rotations caused by earthquakes in the active volcanic area of Campi Flegrei in Naples, Italy. A better understanding of the seismic activity in this highly populated area could improve risk assessment and might lead to improved early warning systems.
Published Enhancing superconductivity of graphene-calcium superconductors



Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.
Published Subduction zone splay faults compound hazards of great earthquakes



Groundbreaking research has provided new insight into the tectonic plate shifts that create some of the Earth's largest earthquakes and tsunamis.
Published Ion irradiation offers promise for 2D material probing



Two-dimensional materials such as graphene promise to form the basis of incredibly small and fast technologies, but this requires a detailed understanding of their electronic properties. New research demonstrates that fast electronic processes can be probed by irradiating the materials with ions first.
Published 2D all-organic perovskites: potential use in 2D electronics



Perovskites are among the most researched topics in materials science. Recently, a research team has solved an age-old challenge to synthesize all-organic two-dimensional perovskites, extending the field into the exciting realm of 2D materials. This breakthrough opens up a new field of 2D all-organic perovskites, which holds promise for both fundamental science and potential applications.
Published Heavy snowfall and rain may contribute to some earthquakes



Episodes of heavy snowfall and rain likely contributed to a swarm of earthquakes over the past several years in northern Japan, researchers find. Their study shows climate conditions could initiate some earthquakes.
Published Pore pressure diffusion led to microseismicity at Illinois basin carbon sequestration site



Pore pressure diffusion generated by carbon dioxide injected underground at a carbon storage site in the Illinois Basin is the likely cause of hundreds of microearthquakes that took place at the site between 2011 and 2012, according to a new analysis.
Published Researchers show that slow-moving earthquakes are controlled by rock permeability



A research group explores how the makeup of rocks, specifically their permeability -- or how easily fluids can flow through them -- affects the frequency and intensity of slow slip events. Slow slips' role in the earthquake cycle may help lead to a better model to predict when earthquakes happen.
Published Do earthquake hazard maps predict higher shaking than actually occurred?



A research team studied earthquake hazard maps from five countries and found that all the maps seemed to overpredict the historically observed earthquake shaking intensities. In analyzing the possible causes, the researchers discovered the issue was with the conversion equations used in comparing the maps predicting future quakes with actual shaking data, rather than systemic problems with the hazard modeling itself.
Published 'Like a nanoscopic Moon lander': Scientists unlock secret of how pyramidal molecules move across surfaces



Scientists have watched a molecule move across a graphite surface in unprecedented detail. It turns out this particular molecule moves like a Moon lander -- and the insights hold potential for future nanotechnologies.
Published Rubber-like stretchable energy storage device fabricated with laser precision



Scientists use laser ablation technology to develop a deformable micro-supercapacitor.