Showing 20 articles starting at article 201

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Graphene, Geoscience: Earthquakes

Return to the site home page

Engineering: Graphene
Published

Smooth sailing for electrons in graphene      (via sciencedaily.com) 

Physicists have directly measured, for the first time at nanometer resolution, the fluid-like flow of electrons in graphene. The results have applications in developing new, low-resistance materials, where electrical transport would be more efficient.

Engineering: Graphene Engineering: Nanotechnology Geoscience: Environmental Issues
Published

From plastic waste to valuable nanomaterials      (via sciencedaily.com) 

Scientists create carbon nanotubes and other hybrid nanomaterials out of plastic waste using an energy-efficient, low-cost, low-emissions process that could also be profitable.

Geoscience: Earthquakes Geoscience: Geology
Published

Earthquake scientists have a new tool in the race to find the next big one      (via sciencedaily.com) 

New research on friction between faults could aid in predicting the world's most powerful earthquakes. Researchers discovered that fault surfaces bond together, or heal, after an earthquake. A fault that is slow to heal is more likely to move harmlessly, while one that heals quickly is more likely to stick until it breaks in a large, damaging earthquake. Tests allowed them to calculate a slow, harmless type of tremor. The discovery alone won't allow scientists to predict when the next big one will strike but it does give researchers a valuable new way to investigate the causes and potential for a large, damaging earthquake to happen, and guide efforts to monitor large faults like Cascadia in the Pacific Northwest.

Computer Science: General Computer Science: Virtual Reality (VR) Engineering: Graphene
Published

Virtual and augmented reality: Researchers pioneer process to stack micro-LEDs      (via sciencedaily.com) 

Researchers are using emerging technology to demonstrate a process that will enable more immersive and realistic virtual and augmented reality displays with the world's smallest and thinnest micro-LEDs.

Geoscience: Earthquakes Geoscience: Geology Geoscience: Volcanoes
Published

Exact magma locations may improve volcanic eruption forecasts      (via sciencedaily.com) 

Cornell University researchers have unearthed precise, microscopic clues to where magma is stored, offering a way to better assess the risk of volcanic eruptions.

Geoscience: Earthquakes Geoscience: Geology
Published

Scientists detect molten rock layer hidden under Earth's tectonic plates      (via sciencedaily.com) 

Scientists have discovered a new layer of partly molten rock under the Earth's crust that might help settle a long-standing debate about how tectonic plates move. The molten layer is located about 100 miles from the surface and is part of the asthenosphere, which is important for plate tectonics because it forms a relatively soft boundary that lets tectonic plates move through the mantle. The researchers found, however that the melt does not appear to notably influence the flow of mantle rocks. Instead, they say, the discovery confirms that the convection of heat and rock in the mantle are the prevailing influence on the motion of the plates.

Engineering: Graphene Space: Exploration
Published

New research computes first step toward predicting lifespan of electric space propulsion systems      (via sciencedaily.com)     Original source 

Electric space propulsion systems use energized atoms to generate thrust. The high-speed beams of ions bump against the graphite surfaces of the thruster, eroding them with each hit, and are the systems' primary lifetime-limiting factor. Researchers used data from low-pressure chamber experiments and large-scale computations to develop a model to better understand the effects of ion erosion on carbon surfaces -- the first step in predicting its failure.

Engineering: Graphene
Published

Novel device enables high-resolution observation of liquid phase dynamic processes at nanoscale      (via sciencedaily.com) 

In situ observation and recording of important liquid-phase electrochemical reactions in energy devices is crucial for the advancement of energy science. A research team has recently developed a novel, tiny device to hold liquid specimens for transmission electron microscopy (TEM) observation, opening the door to directly visualizing and recording complex electrochemical reactions at nanoscale in real-time at high resolution. The research team believes that this innovative method will shed light on strategies for fabricating a powerful research tool for uncovering the mysteries of electrochemical processes in the future.

Engineering: Graphene
Published

Superconductivity switches on and off in 'magic-angle' graphene      (via sciencedaily.com) 

Physicists have found a new way to switch superconductivity on and off in magic-angle graphene. The discovery could lead to ultrafast, energy-efficient superconducting transistors for 'neuromorphic' electronics that operate similarly to the rapid on/off firing of neurons in the human brain.

Chemistry: Thermodynamics Engineering: Graphene
Published

Researchers can 'see' crystals perform their dance moves      (via sciencedaily.com) 

Researchers already knew the atoms in perovskites react favorably to light. Now they've seen precisely how the atoms move when the 2D materials are excited with light. Their study details the first direct measurement of structural dynamics under light-induced excitation in 2D perovskites.

Geoscience: Earthquakes Geoscience: Geology Geoscience: Volcanoes
Published

Looking back at the Tonga eruption      (via sciencedaily.com) 

A 'back-projection' technique reveals new details of the volcanic eruption in Tonga that literally shook the world.

Computer Science: Quantum Computers Engineering: Graphene Offbeat: Computers and Math Physics: Quantum Computing
Published

Scientists observe 'quasiparticles' in classical systems      (via sciencedaily.com) 

Quasiparticles -- long-lived particle-like excitations -- are a cornerstone of quantum physics, with famous examples such as Cooper pairs in superconductivity and, recently, Dirac quasiparticles in graphene. Now, researchers have discovered quasiparticles in a classical system at room temperature: a two-dimensional crystal of particles driven by viscous flow in a microfluidic channel. Coupled by hydrodynamic forces, the particles form stable pairs -- a first example of classical quasiparticles, revealing deep links between quantum and classical dissipative systems.

Engineering: Graphene
Published

Physicists solve mystery of two-dimensional quasicrystal formation from metal oxides      (via sciencedaily.com) 

The structure of two-dimensional titanium oxide brakes-up at high temperatures by adding barium; instead of regular hexagons, rings of four, seven and ten atoms are created that order aperiodically. A team has now solved the riddle of two-dimensional quasicrystal formation from metal oxides.

Energy: Batteries Energy: Technology Engineering: Graphene
Published

Recyclable mobile phone batteries a step closer with rust-busting invention      (via sciencedaily.com) 

Mobile phone batteries with a lifetime up to three times longer than today's technology could be a reality thanks to a recent innovation.

Engineering: Graphene
Published

Electronic nose: Sensing the odor molecules on graphene surface layered with self-assembled peptides      (via sciencedaily.com) 

Graphene-based olfactory sensors that can detect odor molecules based on the design of peptide sequences were recently demonstrated. The findings indicated that graphene field-effect transistors (GFETs) functionalized with designable peptides can be used to develop electronic devices that mimic olfactory receptors and emulate the sense of smell by selectively detecting odor molecules.

Geoscience: Earthquakes Geoscience: Geology
Published

Researchers uncover secrets on how Alaska's Denali Fault formed      (via sciencedaily.com) 

New findings begin to fill major gaps in understanding about how geological faults behave and appear as they deepen, and they could eventually help lead future researchers to develop better earthquake models on strike-slip faults, regions with frequent and major earthquakes.

Engineering: Graphene Engineering: Nanotechnology
Published

Discovery of a new form of carbon called Long-range Ordered Porous Carbon (LOPC)      (via sciencedaily.com) 

The most well-known forms of carbon include graphite and diamond, but there are other more exotic nanoscale allotropes of carbon as well. These include graphene and fullerenes, which are sp2 hybridized carbon with zero (flat-shaped) or positive (sphere-shaped) curvatures. Researchers now report the discovery of a new form of carbon formed by heating fullerenes with lithium nitride.

Engineering: Graphene
Published

Humidity may be the key to super-lubricity 'switch'      (via sciencedaily.com) 

A material state known as super-lubricity, where friction between two contacting surfaces nearly vanishes, is a phenomenon that materials researchers have studied for years due to the potential for reducing the energy cost and wear and tear on devices, two major drawbacks of friction. However, there are times when friction is needed within the same device, and the ability to turn super-lubricity on and off would be a boon for multiple practical engineering applications.

Geoscience: Earthquakes Geoscience: Severe Weather
Published

The adverse health effects of disaster-related trauma      (via sciencedaily.com) 

A new study has found that individuals from disadvantaged backgrounds are more likely to experience disaster-related home loss, and they are also more likely to develop functional limitations following the disaster. 

Engineering: Graphene
Published

Researchers discover new process to create freestanding membranes of 'smart' materials      (via sciencedaily.com) 

A team has developed a new method for making nano-membranes of 'smart' materials, which will allow scientists to harness their unique properties for use in devices such as sensors and flexible electronics.