Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Geoscience: Earthquakes
Published Human brain organoids implanted into mouse cortex respond to visual stimuli for first time


A team of engineers and neuroscientists has demonstrated for the first time that human brain organoids implanted in mice have established functional connectivity to the animals' cortex and responded to external sensory stimuli. The implanted organoids reacted to visual stimuli in the same way as surrounding tissues, an observation that researchers were able to make in real time over several months thanks to an innovative experimental setup that combines transparent graphene microelectrode arrays and two-photon imaging.
Published Hawai'i earthquake swarm caused by magma moving through 'sills'


A machine-learning algorithm reveals the shape of massive subterranean structures linking active volcanoes.
Published At the edge of graphene-based electronics


Researchers developed a new graphene-based nanoelectronics platform compatible with conventional microelectronics manufacturing, paving the way for a successor to silicon.
Published Lucky find! How science behind epidemics helped physicists to develop state-of-the-art conductive paint


Scientists demonstrate how a highly conductive paint coating that they have developed mimics the network spread of a virus through a process called 'explosive percolation' -- a mathematical process which can also be applied to population growth, financial systems and computer networks, but which has not been seen before in materials systems. The finding was a serendipitous development as well as a scientific first for the researchers.
Published Study shows how machine learning could predict rare disastrous events, like earthquakes or pandemics


Researchers suggest how scientists can circumvent the need for massive data sets to forecast extreme events with the combination of an advanced machine learning system and sequential sampling techniques.
Published A shield for 2D materials that adds vibrations to reduce vibration problems


A new study demonstrates a new, counterintuitive way to protect atomically-thin electronics -- adding vibrations, to reduce vibrations. By squeezing a liquid-metal gallium droplet, graphene devices are painted with a protective coating of gallium-oxide that can cover millimeter-wide scales, making it potentially applicable for industrial large-scale fabrication. The new technique improves device performance as well as protecting 2D materials from thermal vibration in neighboring materials.
Published Detrimental secondary health effects after disasters and pandemics


A study has shown that the prevalence of non-communicable diseases, which included hypertension, hyperlipidemia, diabetes, and mental disorders, increased after the Fukushima disaster and the COVID-19 outbreak. These findings emphasize the importance of improving post-disaster health promotion strategies and recommendations.
Published Nanomaterial influences gut microbiome and immune system interactions


The nanomaterial graphene oxide -- which is used in everything from electronics to sensors for biomolecules -- can indirectly affect the immune system via the gut microbiome, as shown in a new study on zebrafish.
Published New life flashed into lithium-ion anodes


Chemists use flash Joule heating to recover graphite anodes from spent lithium-ion batteries at a cost of about $118 per ton.
Published New way to produce important molecular entity


A team presents a new, direct way to produce unsymmetrically constructed vicinal diamines. These structures are relevant for the function of biologically active molecules, natural products and pharmaceuticals.
Published Finding faults deeply stressful


Evidence that a complete stress release may have contributed to the 2011 Tohoku earthquake that broke records. Both sedimentary formations above and below the plate boundary fault lie in the stress state of normal faults in which vertical stress is greater than maximum horizontal stress. The new data show good consistency with previous results above the fault -- at the boundary between the North American plate and the subducting Pacific plate -- suggesting that combining geophysical data and core samples to comprehensively investigate stress states is effective.
Published Palm e-tattoo can tell when you're stressed out


Researchers have applied emerging electronic tattoo (e-tattoo) technology to the tricky task of measuring stress levels by attaching a device to people's palms.
Published New carbon nanotube-based foam promises superior protection against concussions


A lightweight, ultra-shock-absorbing foam made from carbon nanotubes is so good at absorbing and dissipating the energy of an impact, it could vastly improve helmets and prevent concussions and other traumatic brain injuries.
Published Landslide risk remains years after even a weak earthquake


Satellite observations have revealed that weak seismic ground shaking can trigger powerful landslide acceleration -- even several years after a significant earthquake.
Published Earthquake lab experiments produce aftershock-like behavior


Earthquakes are notoriously hard to predict, and so too are the usually less-severe aftershocks that often follow a major seismic event.
Published Exploring the deep: Drones offer new ways to monitor sea floor


Researchers have developed a novel method for measuring the earth's crust on the seafloor. A lightweight geodetic measurement device was mounted on a sea-surface landing unmanned aerial vehicle (UAV). The mobility of this new system will enable rapid, efficient collection of real-time deep seafloor information, which is critical for understanding earthquake risk, as well as various other oceanographic observations.
Published Monitoring 'frothy' magma gases could help evade disaster


Volcanic eruptions are dangerous and difficult to predict. A team has found that the ratio of atoms in specific gases released from volcanic fumaroles (gaps in the Earth's surface) can provide an indicator of what is happening to the magma deep below -- similar to taking a blood test to check your health. This can indicate when things might be 'heating up.' Specifically, changes in the ratio of argon-40 and helium-3 can indicate how frothy the magma is, which signals the risk of different types of eruption. Understanding which ratios of which gases indicate a certain type of magma activity is a big step. Next, the team hopes to develop portable equipment which can provide on-site, real-time measurements for a 24/7 volcanic activity monitoring and early warning system.
Published Asphaltene changed into graphene for composites


The flash Joule heating process turns asphaltenes, a byproduct of crude oil production, into graphene for use in composite materials.
Published Researchers learn to engineer growth of crystalline materials consisting of nanometer-size gold clusters


First insights into engineering crystal growth by atomically precise metal nanoclusters have been achieved in a new study.
Published Using 1980s environmental modeling to mitigate future disasters: Could Japan's 3/11 disaster have been prevented?


On March 11, 2011, multiple catastrophes in Japan were triggered by the Great East Japan Earthquake, including the nuclear accident at the Fukushima Daiichi Nuclear Power Plant. This event, also known as the 3/11 disaster, is what is known as a compound disaster. Now that over a decade has passed since this event, researchers are investigating how to prevent the next compound disaster.