Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Geoscience: Earthquakes
Published Graphene research: Numerous products, no acute dangers found by study



Graphene is an enormously promising material. It consists of a single layer of carbon atoms arranged in a honeycomb pattern and has extraordinary properties: exceptional mechanical strength, flexibility, transparency and outstanding thermal and electrical conductivity. If the already two-dimensional material is spatially restricted even more, for example into a narrow ribbon, controllable quantum effects can be created. This could enable a wide range of applications, from vehicle construction and energy storage to quantum computing.
Published Biggest Holocene volcano eruption found by seabed survey



A detailed survey of the volcanic underwater deposits around the Kikai caldera in Japan clarified the deposition mechanisms as well as the event's magnitude. As a result, the research team found that the event 7,300 years ago was the largest volcanic eruption in the Holocene by far.
Published New detection method aims to warn of landslide tsunamis



Researchers have devised a way to remotely detect large landslides within minutes of occurrence and to quickly determine whether they are close to open water and present a tsunami hazard.
Published Electrons become fractions of themselves in graphene



Physicists have observed fractional quantum Hall effect in simple pentalayer graphene. The finding could make it easier to develop more robust quantum computers.
Published New non-toxic method for producing high-quality graphene oxide



Researchers have found a new way to synthesize graphene oxide which has significantly fewer defects compared to materials produced by most common method. Similarly good graphene oxide could be synthesized previously only using rather dangerous method involving extremely toxic fuming nitric acid.
Published Fresh meat: New biosensor accurately and efficiently determines meat freshness



Despite the technological advances keeping meat fresh for as long as possible, certain aging processes are unavoidable. Adenosine triphosphate is a molecule produced by breathing and responsible for providing energy to cells. When an animal stops breathing, ATP synthesis also stops, and the existing molecules decompose into acid, diminishing first flavor and then safety. Hypoxanthine and xanthine are intermediate steps in this transition. Assessing their prevalence in meat indicates its freshness.
Published Earthquake fatality measure offers new way to estimate impact on countries



A new measure that compares earthquake-related fatalities to a country's population size concludes that Ecuador, Lebanon, Haiti, Turkmenistan, Iran and Portugal have experienced the greatest impact from fatalities in the past five centuries.
Published First human trial shows 'wonder' material can be developed safely



A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests.
Published Two-dimensional waveguides discovered



Scientists announce the discovery of slab waveguides based on the two-dimensional material hexagonal boron nitride.
Published Early-stage subduction invasion



Our planet's lithosphere is broken into several tectonic plates. Their configuration is ever-shifting, as supercontinents are assembled and broken up, and oceans form, grow, and then start to close in what is known as the Wilson cycle.
Published Sensors made from 'frozen smoke' can detect toxic formaldehyde in homes and offices



Researchers have developed a sensor made from 'frozen smoke' that uses artificial intelligence techniques to detect formaldehyde in real time at concentrations as low as eight parts per billion, far beyond the sensitivity of most indoor air quality sensors.
Published New adhesive tape picks up and sticks down 2D materials as easily as child's play



A research team has developed a tape that can be used to stick two-dimensional (2D) materials to many different surfaces, in an easy and user-friendly way. Their finding will aid research into and boost production of 2D materials for next-generation devices.
Published Ancient rocks improve understanding of tectonic activity between earthquakes



Rocks once buried deep in ancient subduction zones -- where tectonic plates collide -- could help scientists make better predictions of how these zones behave during the years between major earthquakes, according to a research team.
Published New method to more accurately spot underground nuclear tests



A more accurate way of identifying underground nuclear tests, including those conducted in secret, has been developed.
Published A new origin story for deadly Seattle fault



The Seattle fault zone is a network of shallow faults slicing through the lowlands of Puget Sound, threatening to create damaging earthquakes for the more than four million people who live there. A new origin story, proposed in a new study, could explain the fault system's earliest history and help scientists improve hazard modeling for the densely populated region.
Published Ultra-sensitive lead detector could significantly improve water quality monitoring



Engineers have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous technologies.
Published Key dynamics of 2D nanomaterials: View to larger-scale production



A team of researchers mapped out how flecks of 2D materials move in liquid -- knowledge that could help scientists assemble macroscopic-scale materials with the same useful properties as their 2D counterparts.
Published Machine learning guides carbon nanotechnology



Carbon nanostructures could become easier to design and synthesize thanks to a machine learning method that predicts how they grow on metal surfaces. The new approach will make it easier to exploit the unique chemical versatility of carbon nanotechnology.
Published Coal-based product could replace sand in concrete



A new study found that graphene derived from metallurgical coke, a coal-based product, through flash Joule heating could serve not only as a reinforcing additive in cement but also as a replacement for sand in concrete.
Published Researchers add a 'twist' to classical material design



Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.