Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Geoscience: Severe Weather
Published Nanophysics: The right twist


Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.
Published Graphene grows -- and we can see it


Graphene is the strongest of all materials. On top of that, it is exceptionally good at conducting heat and electrical currents, making it one of the most special and versatile materials we know. For all these reasons, the discovery of graphene was awarded the Nobel Prize in Physics in 2010. Yet, many properties of the material and its cousins are still poorly understood -- for the simple reason that the atoms they are made up of are very difficult to observe.
Published The global economics of climate action


Climate change has serious consequences for the environment and people and is a major threat to economic stability. A new assessment reviews innovative, integrated research that underpins the economic case for strong near-term climate action.
Published Genome of a drought-tolerant plant: Many genes are involved in 'resurrection'


Some plants can survive months without water, only to turn green again after a brief downpour. A recent study shows that this is not due to a 'miracle gene.' Rather, this ability is a consequence of a whole network of genes, almost all of which are also present in more vulnerable varieties.
Published Drought, heat waves worsen West Coast air pollution inequality


A new study found drought and heat waves could make air pollution worse for communities that already have a high pollution burden in California, and deepen pollution inequalities along racial and ethnic lines. The study also found financial penalties for power plants can significantly reduce people's pollution exposure, except during severe heat waves.
Published Phytoplankton blooms offer insight into impacts of climate change


The first study into the biological response of the upper ocean in the wake of South Pacific cyclones could help predict the impact of warming ocean temperatures, researchers believe.
Published Sea otters killed by unusual parasite strain


An unusually severe form of toxoplasmosis killed four sea otters and could pose a threat to other marine wildlife and humans, finds a new study.
Published New simulation reveals secrets of exotic form of electrons called polarons


Conditions mapped for the first time of polaron characteristics in 2D materials. TACC's Frontera supercomputer generated quantum mechanical calculations on hexagonal boron nitride system of 30,000 atoms.
Published Mind-control robots a reality?


Researchers have developed biosensor technology that will allow you to operate devices, such as robots and machines, solely through thought control.
Published Another crystalline layer on crystal surface as a precursor of crystal-to-crystal transition


Ice surfaces have a thin layer of water below its melting temperature of 0 degrees Celsius. Such premelting phenomenon is important for skating and snowflake growth. Similarly, liquid often crystallizes into a thin layer of crystal on a flat substrate before reaching its freezing temperature, i.e. prefreezing. The thickness of the surface layer usually increases and diverges as approaching the phase transition (such as melting and freezing) temperature. Besides premelting and prefreezing, whether similar surface phenomenon exists as a precursor of a phase transition has rarely been explored. Scientists now propose that a polymorphic crystalline layer may form on a crystal surface before the crystal-crystal phase transition and names it pre-solid-solid transition.
Published Nano cut-and-sew: New method for chemically tailoring layered nanomaterials could open pathways to designing 2D materials on demand


A new process that lets scientists chemically cut apart and stitch together nanoscopic layers of two-dimensional materials -- like a tailor altering a suit -- could be just the tool for designing the technology of a sustainable energy future. Researchers have developed a method for structurally splitting, editing and reconstituting layered materials, called MAX phases and MXenes, with the potential of producing new materials with very unusual compositions and exceptional properties.
Published East Coast, US, landslide impacts from Puerto Rico to Vermont and in between


In the U.S., we may often think of landslides as primarily a West Coast problem, mostly plaguing the mountainous terrain of California, Oregon, and Washington. New research highlights the major impacts of landslides on the U.S. East Coast and what is being done to save lives and deal with the damages.
Published High winds can worsen pathogen spread at outdoor chicken farms


A study of chicken farms in the West found that high winds increased the prevalence of Campylobacter in outdoor flocks, a bacterial pathogen in poultry that is the largest single cause of foodborne illness in the U.S. Researchers found that about 26% of individual chickens had the pathogen at the 'open environment' farms in the study, which included organic and free-range chicken farms. High winds the week prior to sampling and the farms' location in more intensive agricultural settings were linked to a greater prevalence of Campylobacter.
Published A mechanistic and probabilistic method for predicting wildfires


In the event of dry weather and high winds, power system-ignited incidents are more likely to develop into wildfires. The risk is greater if vegetation is nearby. A new study provides the methodology for predicting at what point during a high wind storm, powerline ignition is likely.
Published Entire populations of Antarctic seabirds fail to breed due to extreme, climate-change-related snowstorms


The arrival of the new year is a prime time for Antarctic birds like the south polar skua, Antarctic petrel, and snow petrel to build nests and lay their eggs. However, from December 2021 to January 2022, researchers did not find a single skua nest on Svarthamaren, one of the regions where the birds go to raise their young. Similarly, the number of Antarctic petrel and snow petrel nests dropped to almost zero.
Published 3D internal structure of rechargeable batteries revealed


Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.
Published Microscopy: Highest resolution in three dimensions


Researchers have developed a super-resolution microscopy method for the rapid differentiation of molecular structures in 3D.
Published The world's atmospheric rivers now have an intensity ranking like hurricanes


Atmospheric rivers, which are long, narrow bands of water vapor, are becoming more intense and frequent with climate change. A new study demonstrates that a recently developed scale for atmospheric river intensity (akin to the hurricane scale) can be used to rank atmospheric rivers and identify hotspots of the most intense atmospheric rivers not only along the U.S. West Coast but also worldwide.
Published Underused satellite, radar data may improve thunderstorm forecasts


Tens of thousands of thunderstorms may rumble around the world each day, but accurately predicting the time and location where they will form remains a grand challenge of computer weather modeling. A new technique combining underused satellite and radar data in weather models may improve these predictions, according to a team of scientists.
Published Graphene quantum dots show promise as novel magnetic field sensors


Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.