Showing 20 articles starting at article 441

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Graphene, Geoscience: Severe Weather

Return to the site home page

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nanophysics: The right twist      (via sciencedaily.com) 

Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.

Engineering: Graphene Physics: General
Published

Graphene grows -- and we can see it      (via sciencedaily.com) 

Graphene is the strongest of all materials. On top of that, it is exceptionally good at conducting heat and electrical currents, making it one of the most special and versatile materials we know. For all these reasons, the discovery of graphene was awarded the Nobel Prize in Physics in 2010. Yet, many properties of the material and its cousins are still poorly understood -- for the simple reason that the atoms they are made up of are very difficult to observe.

Environmental: General Geoscience: Environmental Issues Geoscience: Severe Weather
Published

The global economics of climate action      (via sciencedaily.com) 

Climate change has serious consequences for the environment and people and is a major threat to economic stability. A new assessment reviews innovative, integrated research that underpins the economic case for strong near-term climate action.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Environmental: Water Geoscience: Environmental Issues Geoscience: Severe Weather
Published

Genome of a drought-tolerant plant: Many genes are involved in 'resurrection'      (via sciencedaily.com) 

Some plants can survive months without water, only to turn green again after a brief downpour. A recent study shows that this is not due to a 'miracle gene.' Rather, this ability is a consequence of a whole network of genes, almost all of which are also present in more vulnerable varieties.

Environmental: General Geoscience: Environmental Issues Geoscience: Severe Weather
Published

Drought, heat waves worsen West Coast air pollution inequality      (via sciencedaily.com) 

A new study found drought and heat waves could make air pollution worse for communities that already have a high pollution burden in California, and deepen pollution inequalities along racial and ethnic lines. The study also found financial penalties for power plants can significantly reduce people's pollution exposure, except during severe heat waves.

Biology: Biochemistry Biology: Botany Biology: Marine Ecology: Sea Life Environmental: Ecosystems Environmental: Water Geoscience: Geography Geoscience: Oceanography Geoscience: Severe Weather
Published

Phytoplankton blooms offer insight into impacts of climate change      (via sciencedaily.com) 

The first study into the biological response of the upper ocean in the wake of South Pacific cyclones could help predict the impact of warming ocean temperatures, researchers believe.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New simulation reveals secrets of exotic form of electrons called polarons      (via sciencedaily.com) 

Conditions mapped for the first time of polaron characteristics in 2D materials. TACC's Frontera supercomputer generated quantum mechanical calculations on hexagonal boron nitride system of 30,000 atoms.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Graphene Engineering: Nanotechnology Engineering: Robotics Research
Published

Mind-control robots a reality?      (via sciencedaily.com) 

Researchers have developed biosensor technology that will allow you to operate devices, such as robots and machines, solely through thought control.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene
Published

Another crystalline layer on crystal surface as a precursor of crystal-to-crystal transition      (via sciencedaily.com) 

Ice surfaces have a thin layer of water below its melting temperature of 0 degrees Celsius. Such premelting phenomenon is important for skating and snowflake growth. Similarly, liquid often crystallizes into a thin layer of crystal on a flat substrate before reaching its freezing temperature, i.e. prefreezing. The thickness of the surface layer usually increases and diverges as approaching the phase transition (such as melting and freezing) temperature. Besides premelting and prefreezing, whether similar surface phenomenon exists as a precursor of a phase transition has rarely been explored. Scientists now propose that a polymorphic crystalline layer may form on a crystal surface before the crystal-crystal phase transition and names it pre-solid-solid transition.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

Nano cut-and-sew: New method for chemically tailoring layered nanomaterials could open pathways to designing 2D materials on demand      (via sciencedaily.com) 

A new process that lets scientists chemically cut apart and stitch together nanoscopic layers of two-dimensional materials -- like a tailor altering a suit -- could be just the tool for designing the technology of a sustainable energy future. Researchers have developed a method for structurally splitting, editing and reconstituting layered materials, called MAX phases and MXenes, with the potential of producing new materials with very unusual compositions and exceptional properties.

Geoscience: Geography Geoscience: Landslides Geoscience: Severe Weather
Published

East Coast, US, landslide impacts from Puerto Rico to Vermont and in between      (via sciencedaily.com) 

In the U.S., we may often think of landslides as primarily a West Coast problem, mostly plaguing the mountainous terrain of California, Oregon, and Washington. New research highlights the major impacts of landslides on the U.S. East Coast and what is being done to save lives and deal with the damages.

Biology: Microbiology Biology: Zoology Ecology: Animals Geoscience: Severe Weather
Published

High winds can worsen pathogen spread at outdoor chicken farms      (via sciencedaily.com) 

A study of chicken farms in the West found that high winds increased the prevalence of Campylobacter in outdoor flocks, a bacterial pathogen in poultry that is the largest single cause of foodborne illness in the U.S. Researchers found that about 26% of individual chickens had the pathogen at the 'open environment' farms in the study, which included organic and free-range chicken farms. High winds the week prior to sampling and the farms' location in more intensive agricultural settings were linked to a greater prevalence of Campylobacter.

Environmental: Wildfires Geoscience: Severe Weather
Published

A mechanistic and probabilistic method for predicting wildfires      (via sciencedaily.com) 

In the event of dry weather and high winds, power system-ignited incidents are more likely to develop into wildfires. The risk is greater if vegetation is nearby. A new study provides the methodology for predicting at what point during a high wind storm, powerline ignition is likely.

Biology: Zoology Geoscience: Severe Weather
Published

Entire populations of Antarctic seabirds fail to breed due to extreme, climate-change-related snowstorms      (via sciencedaily.com) 

The arrival of the new year is a prime time for Antarctic birds like the south polar skua, Antarctic petrel, and snow petrel to build nests and lay their eggs. However, from December 2021 to January 2022, researchers did not find a single skua nest on Svarthamaren, one of the regions where the birds go to raise their young. Similarly, the number of Antarctic petrel and snow petrel nests dropped to almost zero.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries Energy: Technology Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

3D internal structure of rechargeable batteries revealed      (via sciencedaily.com) 

Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.

Chemistry: Organic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

Microscopy: Highest resolution in three dimensions      (via sciencedaily.com) 

Researchers have developed a super-resolution microscopy method for the rapid differentiation of molecular structures in 3D.

Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Geoscience: Severe Weather
Published

The world's atmospheric rivers now have an intensity ranking like hurricanes      (via sciencedaily.com) 

Atmospheric rivers, which are long, narrow bands of water vapor, are becoming more intense and frequent with climate change. A new study demonstrates that a recently developed scale for atmospheric river intensity (akin to the hurricane scale) can be used to rank atmospheric rivers and identify hotspots of the most intense atmospheric rivers not only along the U.S. West Coast but also worldwide.

Geoscience: Environmental Issues Geoscience: Geography Geoscience: Severe Weather Space: General
Published

Underused satellite, radar data may improve thunderstorm forecasts      (via sciencedaily.com) 

Tens of thousands of thunderstorms may rumble around the world each day, but accurately predicting the time and location where they will form remains a grand challenge of computer weather modeling. A new technique combining underused satellite and radar data in weather models may improve these predictions, according to a team of scientists.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Graphene quantum dots show promise as novel magnetic field sensors      (via sciencedaily.com) 

Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.