Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Geoscience: Oceanography
Published What turned Earth into a giant snowball 700 million years ago? Scientists now have an answer



Inspired during field work in South Australia's Flinders Ranges, geoscientists have proposed that all-time low volcanic carbon dioxide emissions triggered a 57-million-year-long global 'Sturtian' ice age.
Published How kelp forests persisted through the large 2014-2016 Pacific marine heatwave



New research reveals that denser, and more sheltered, kelp forests can withstand serious stressors amid warming ocean temperatures.
Published Small but mighty -- study highlights the abundance and importance of the ocean's tiniest inhabitants



New research sheds light on tiny plankton, which measure less than 0.02mm in diameter but can make up more than 70% of the plankton biomass found in the ocean.
Published Study challenges the classical view of the origin of the Antarctic Circumpolar Current and warns of its vulnerability



The Circumpolar Current works as a regulator of the planet's climate. Its origins were thought to have caused the formation of the permanent ice in Antarctica about 34 million years ago. Now, a study has cast doubt on this theory, and has changed the understanding of how the ice sheet in Antarctic developed in the past, and what this could mean in the future as the planet's climate changes.
Published Vitamin B12 adaptability in Antarctic algae has implications for climate change, life in the Southern Ocean



The algae P. antarctica has two forms of the enzyme that makes the amino acid methionine, one needing B12, and one that is slower, but doesn't need it. This means it has the ability to adapt and survive with low B12 availability. The presence of the MetE gene in P. antarctica gives the algae the ability to adapt to lower vitamin B12 availability, giving it a potential advantage to bloom in the early austral spring when bacterial production is low. P. antarctica takes in the CO2 and releases oxygen through photosynthesis. Understanding its ability to grow in environments with low vitamin B12 availability can help climate modelers make more accurate predictions.
Published Ultra-sensitive lead detector could significantly improve water quality monitoring



Engineers have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous technologies.
Published Tidal landscapes a greater carbon sink than previously thought



Mangroves and saltmarshes sequester large amounts of carbon, mitigating the greenhouse effect. New research shows that these environments are perhaps twice as effective as previously thought.
Published Key dynamics of 2D nanomaterials: View to larger-scale production



A team of researchers mapped out how flecks of 2D materials move in liquid -- knowledge that could help scientists assemble macroscopic-scale materials with the same useful properties as their 2D counterparts.
Published Engineers unmask nanoplastics in oceans for the first time, revealing their true shapes and chemistry



Millions of tons of plastic waste enter the oceans each year. The sun's ultraviolet light and ocean turbulence break down these plastics into invisible nanoparticles that threaten marine ecosystems. In a new study, engineers have presented clear images of nanoplastics in ocean water off the coasts of China, South Korea and the United States, and in the Gulf of Mexico. These tiny plastic particles, which originated from such consumer products as water bottles, food packaging and clothing, were found to have surprising diversity in shape and chemical composition.
Published Machine learning guides carbon nanotechnology



Carbon nanostructures could become easier to design and synthesize thanks to a machine learning method that predicts how they grow on metal surfaces. The new approach will make it easier to exploit the unique chemical versatility of carbon nanotechnology.
Published Unprecedented ocean heating shows risks of a world 3°C warmer



New research examines the causes of the record-breaking ocean temperatures witnessed in 2023.
Published As sea otters recolonize California estuary, they restore its degraded geology



As sea otters recolonize a California estuary, they are restoring its degraded geology by keeping populations of overgrazing marsh crabs in check, a new study shows. The crabs' appetite for plant roots, and their tunneling behavior had caused many of the estuary's marshes and creekbanks to erode and collapse in the otters' absence. Today, erosion has slowed by up to 90% in areas with large otter populations and marshes and streambeds are restabilizing.
Published Geoengineering may slow Greenland ice sheet loss



Modeling shows that stratospheric aerosol injection has the potential to reduce ice sheet loss due to climate change.
Published New research shows how pollutants from aerosols and river run-off are changing the marine phosphorus cycle in coastal seas



New research sheds light on how pollutants from aerosols and river run-off are impacting coastal seas. The research identified an 'Anthropogenic Nitrogen Pump' which changes the phosphorus cycle and therefore likely coastal biodiversity and associated ecosystem services.
Published Some plastic straws degrade quicker than others



Not all plastics are created the same, and some last longer in the ocean than others. Scientists have been working for years to quantify the environmental lifetimes of a wide range of plastic goods to see which have the shortest and longest lifespans in the ocean. To determine what plastics persist in the ocean, the team tests different products in large tanks that recreate the natural ocean environment.
Published How waves and mixing drive coastal upwelling systems



Large coastal upwelling systems along the eastern margins of the Atlantic and Pacific Oceans are among the most biologically productive and biodiverse regions of the world's oceans. Typically, the strength and timing of upwelling in such systems are linked to the prevailing winds. Interestingly, in some tropical regions, high levels of productivity occur even when the upwelling favorable winds are weak.
Published Coal-based product could replace sand in concrete



A new study found that graphene derived from metallurgical coke, a coal-based product, through flash Joule heating could serve not only as a reinforcing additive in cement but also as a replacement for sand in concrete.
Published Unexpected biodiversity on the ocean floor



Hydrothermal vents and manganese nodule fields in the deep oceans contain more biodiversity than expected.
Published Microplastics may be accumulating rapidly in endangered Galápagos penguins' food web



Model predictions showed a rapid increase in microplastic accumulation and contamination across the penguins' prey organisms resulting in Galapagos penguin showing the highest level of microplastics per biomass, followed by barracuda, anchovy, sardine, herring, and predatory zooplankton.
Published Researchers add a 'twist' to classical material design



Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.