Showing 20 articles starting at article 501
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Paleontology: General
Published Discovery of world's oldest DNA breaks record by one million years


Two-million-year-old DNA has been identified -- opening a 'game-changing' new chapter in the history of evolution. Microscopic fragments of environmental DNA were found in Ice Age sediment in northern Greenland. Using cutting-edge technology, researchers discovered the fragments are one million years older than the previous record for DNA sampled from a Siberian mammoth bone. The ancient DNA has been used to map a two-million-year-old ecosystem which weathered extreme climate change.
Published For 400 years, Indigenous tribes buffered climate's impact on wildfires in the American Southwest



Devastating megafires are becoming more common, in part, because the planet is warming. But a new study suggests bringing 'good fire' back to the U.S. and other wildfire fire-prone areas, as Native Americans once did, could potentially blunt the role of climate in triggering today's wildfires.
Published Dinosaurs were on the up before asteroid downfall


Dinosaurs dominated the world right up until a deadly asteroid hit the earth, leading to their mass extinction, some 66 million years ago, a landmark study reveals. Fresh insights into dinosaurs' ecosystems -- the habitats and food types that supported their lives -- suggests that their environments were robust and thriving, right up until that fateful day, at the end of the Cretaceous period.
Published Palm e-tattoo can tell when you're stressed out


Researchers have applied emerging electronic tattoo (e-tattoo) technology to the tricky task of measuring stress levels by attaching a device to people's palms.
Published New carbon nanotube-based foam promises superior protection against concussions


A lightweight, ultra-shock-absorbing foam made from carbon nanotubes is so good at absorbing and dissipating the energy of an impact, it could vastly improve helmets and prevent concussions and other traumatic brain injuries.
Published Asphaltene changed into graphene for composites


The flash Joule heating process turns asphaltenes, a byproduct of crude oil production, into graphene for use in composite materials.
Published Researchers learn to engineer growth of crystalline materials consisting of nanometer-size gold clusters


First insights into engineering crystal growth by atomically precise metal nanoclusters have been achieved in a new study.
Published Growing pure nanotubes is a stretch, but possible


Researchers have published a new theory for making batches of carbon nanotubes with a single, desired chirality. Their method could simplify purification of nanotubes that are all metallic or all semiconductors.
Published New study introduces the best graphite films


A recent study has proposed a strategy to synthesize single-crystalline graphite films orders of magnitude large, up to inch scale.
Published Discovery of a fundamental law of friction leads to new materials that can minimize energy loss


Chemists and engineers have discovered a fundamental friction law that is leading to a deeper understanding of energy dissipation in friction and the design of two-dimensional materials capable of minimizing energy loss.
Published In nanotube science, is boron nitride the new carbon?


Engineers synthesized aligned forests of nanoscale fibers made of boron nitride, or 'white graphene.' They hope to harness the technique to fabricate bulk-scale arrays of these nanotubes, which can then be combined with other materials to make stronger, more heat-resistant composites, for instance to shield space structures and hypersonic aircraft.
Published Trapping polaritons in an engineered quantum box


Researchers have engineered a quantum box for polaritons in a 2D material, achieving large polariton densities and a partially 'coherent' quantum state. New insights from the novel technique could allow researchers to access striking 'collective' quantum phenomena in this material family, and enable ultra-energy efficient and high-performance future technologies. Laying a 'small' 2D material on top of a 'large' layer allowed the researchers to trap and investigate polaritons, comparing them with freely moving polaritons.
Published Upgrading your computer to quantum


Researchers have demonstrated how a nanoscale layer of superconducting niobium nitride (NbNx) can be grown directly onto aluminum nitride (AIN). The arrangement of atoms, nitrogen content, and electrical conductivity were found to depend on growth conditions, particularly temperature, and the spacing of atoms in the two materials was sufficiently compatible to produce flat layers. The structural similarity between NbNx and AIN will facilitate the integration of superconductors into semiconductor optoelectronic devices.
Published Novel carrier doping in p-type semiconductors enhances photovoltaic device performance by increasing hole concentration


The carrier concentration and conductivity in p-type monovalent copper semiconductors can be significantly enhanced by adding alkali metal impurities. Doping with isovalent and larger-sized alkali metal ions effectively increased the free charge carrier concentration, and the mechanism was unraveled by their theoretical calculations. Their carrier doping technology enables high carrier concentration and high mobility p-type thin films to be prepared from the solution process, with photovoltaic device applications.
Published Making mini-magnets


Researchers demonstrated a topological insulator device that opens the way towards observing the quantum anomalous Hall effect. Because the currents generated are resistant to scattering, but very sensitive to applied magnetic fields, they may be used for reducing power consumption in computing applications.
Published Researchers devise tunable conducting edge


Physicists have demonstrated a new magnetized state in a monolayer of tungsten ditelluride. This material of one-atom thickness has an insulating interior but a conducting edge, which has important implications for controlling electron flow in nanodevices.
Published The electron slow motion: Ion physics on the femtosecond scale


How do different materials react to the impact of ions? This is a question that plays an important role in many areas of research -- for example in nuclear fusion research, when the walls of the fusion reactor are bombarded by high-energy ions. However, it is difficult to understand the temporal sequence of such processes. A research group has now succeeded in analyzing on a time scale of one femtosecond what happens to the individual particles involved when an ion penetrates materials such as graphene or molybdenum disulphide.
Published Microscopic color converters move small laser-based devices closer to reality


Researchers have used an atomically thin material to build a device that can change the color of laser beams. Their microscopic device -- a fraction of the size of conventional color converters -- may yield new kinds of ultra-small optical circuit chips and advance quantum optics.
Published Superconducting diode without magnetic field in multilayer graphene


Superconductors are the key to lossless current flow. However, the realization of superconducting diodes has only recently become an important topic of fundamental research. An international research team has now succeeded in reaching a milestone: the demonstration of an extremely strong superconducting diode effect in a single two-dimensional superconductor.
Published Unexpected quantum effects in natural double-layer graphene


An international research team has detected novel quantum effects in high-precision studies of natural double-layer graphene. This research provides new insights into the interaction of the charge carriers and the different phases, and contributes to the understanding of the processes involved.