Showing 20 articles starting at article 261
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Paleontology: Climate
Published A reconstruction of prehistoric temperatures for some of the oldest archaeological sites in North America


Scientists often look to the past for clues about how Earth's landscapes might shift under a changing climate, and for insight into the migrations of human communities through time. A new study offers both by providing, for the first time, a reconstruction of prehistoric temperatures for some of the first known North American settlements.
Published Is it COVID-19 or the flu? New sensor could tell you in 10 seconds


Have a cough, sore throat and congestion? Any number of respiratory viruses could be responsible. Today, scientists report using a single-atom-thick nanomaterial to build a device that can simultaneously detect the presence of the viruses that cause COVID-19 and the flu -- at much lower levels and much more quickly than conventional tests for either.
Published Nanophysics: The right twist


Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.
Published The Greenland Ice Sheet is close to a melting point of no return


A new study using simulations identified two tipping points for the Greenland Ice Sheet: releasing 1000 gigatons of carbon into the atmosphere will cause the southern portion of the ice sheet to melt; about 2500 gigatons of carbon means permanent loss of nearly the entire ice sheet. Having emitted about 500 gigatons of carbon, we're about halfway to the first tipping point.
Published Graphene grows -- and we can see it


Graphene is the strongest of all materials. On top of that, it is exceptionally good at conducting heat and electrical currents, making it one of the most special and versatile materials we know. For all these reasons, the discovery of graphene was awarded the Nobel Prize in Physics in 2010. Yet, many properties of the material and its cousins are still poorly understood -- for the simple reason that the atoms they are made up of are very difficult to observe.
Published Sea ice will soon disappear from the Arctic during the summer months -- and it has happened before


In a new study, an international team of researchers warn that the Arctic Sea ice may soon be a thing of the past in the summer months. This may have consequences for both the climate and ecosystems. Ten thousand years ago, the ice melted at temperatures similar to those we have today.
Published New simulation reveals secrets of exotic form of electrons called polarons


Conditions mapped for the first time of polaron characteristics in 2D materials. TACC's Frontera supercomputer generated quantum mechanical calculations on hexagonal boron nitride system of 30,000 atoms.
Published 3000+ billion tons of ice lost from Antarctic Ice Sheet over 25 years



Scientists have calculated that the fastest changing Antarctic region?-?the Amundsen Sea Embayment?-?has lost more than 3,000 billion tonnes of ice over a 25-year?period.??
Published Genome research: Origin and evolution of vine


Cultivation and growth of grapevines have strongly influenced European civilizations, but where the grapevine comes from and how it has spread across the globe has been highly disputed so far. In an extensive genome project, researchers have determined its origin and evolution from the wild vine to today's cultivar by analyzing thousands of vine genomes collected along the Silk Road from China to Western Europe.
Published Mind-control robots a reality?


Researchers have developed biosensor technology that will allow you to operate devices, such as robots and machines, solely through thought control.
Published Another crystalline layer on crystal surface as a precursor of crystal-to-crystal transition


Ice surfaces have a thin layer of water below its melting temperature of 0 degrees Celsius. Such premelting phenomenon is important for skating and snowflake growth. Similarly, liquid often crystallizes into a thin layer of crystal on a flat substrate before reaching its freezing temperature, i.e. prefreezing. The thickness of the surface layer usually increases and diverges as approaching the phase transition (such as melting and freezing) temperature. Besides premelting and prefreezing, whether similar surface phenomenon exists as a precursor of a phase transition has rarely been explored. Scientists now propose that a polymorphic crystalline layer may form on a crystal surface before the crystal-crystal phase transition and names it pre-solid-solid transition.
Published Nano cut-and-sew: New method for chemically tailoring layered nanomaterials could open pathways to designing 2D materials on demand


A new process that lets scientists chemically cut apart and stitch together nanoscopic layers of two-dimensional materials -- like a tailor altering a suit -- could be just the tool for designing the technology of a sustainable energy future. Researchers have developed a method for structurally splitting, editing and reconstituting layered materials, called MAX phases and MXenes, with the potential of producing new materials with very unusual compositions and exceptional properties.
Published New study finds early warning signs prior to 2002 Antarctic ice shelf collapse


In 2002, an area of ice about the size of Rhode Island dramatically broke away from Antarctica as the Larsen B ice shelf collapsed. A new study of the conditions that led to the collapse may reveal warning signs to watch for future Antarctic ice shelf retreat, according to a new scientists.
Published 3D internal structure of rechargeable batteries revealed


Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.
Published Microscopy: Highest resolution in three dimensions


Researchers have developed a super-resolution microscopy method for the rapid differentiation of molecular structures in 3D.
Published Major North American oil source yields clues to one of earth's deadliest mass extinctions


Geologists studying the Bakken Shale Formation discovered a critical kill mechanism behind a series of extinctions some 350 million years ago.
Published Short-distance migration critical for climate change adaptation


Short-distance migration, which accounts for the vast majority of migratory movements in the world, is crucial for climate change adaptation, according to new research. Contrary to common assumptions, most migratory movements are people moving short distances, largely due to economic, social and environmental factors, such as climate change.
Published Elegantly modeling Earth's abrupt glacial transitions



Milutin Milankovitch hypothesized that the timing of glacial transitions has been controlled by the orbital parameters of the Earth, which suggests that there may be some predictability in the climate, a notoriously complex system. Now researchers propose a new paradigm to simplify the verification of the Milankovitch hypothesis. The new 'deterministic excitation paradigm' combines the physics concepts of relaxation oscillation and excitability to link Earth's orbital parameters and the glacial cycles in a more generic way.
Published Graphene quantum dots show promise as novel magnetic field sensors


Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.
Published Most detailed geological model reveals Earth's past 100 million years


Previous models of Earth's recent (100 million years) geomorphology have been patchy at best. For the first time a detailed continuous model of the Earth's landscape evolution is presented, with potential for understanding long-term climate and biological development.