Showing 20 articles starting at article 361
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene, Offbeat: Paleontology and Archeology
Published One of Swedish warship Vasa's crew was a woman


When the human remains found on board the Swedish warship Vasa (1628) were investigated, it was determined that the skeleton designated G was a man. New research now shows that the skeleton is actually from a woman. About thirty people died when Vasa sank on its maiden voyage in Stockholm, 1628. We cannot know who most of them were, only one person is named in the written sources. When the ship was raised in 1961 it was the scene of a comprehensive archaeological excavation, in which numerous human bones were found on board and examined.
Published Strong ultralight material could aid energy storage, carbon capture



Materials scientists showed that fine-tuning interlayer interactions in a class of 2D polymers can determine the materials' loss or retention of desirable mechanical properties in multilayer or bulk form.
Published Yak milk consumption among Mongol Empire elites


For the first time, researchers have pinpointed a date when elite Mongol Empire people were drinking yak milk, according to a new study.
Published Researchers use 21st century methods to record 2,000 years of ancient graffiti in Egypt


Researchers are learning more about ancient graffiti -- and their intriguing comparisons to modern graffiti -- as they produce a state-of-the-art 3D recording of the Temple of Isis in Philae, Egypt.
Published Predatory dinosaurs such as T. rex sported lizard-like lips


A new study suggests that predatory dinosaurs, such as Tyrannosaurus rex, did not have permanently exposed teeth as depicted in films such as Jurassic Park, but instead had scaly, lizard-like lips covering and sealing their mouths.
Published Ancient giant amphibians swam like crocodiles 250 million years ago


Ancient 2m-long amphibians swam like crocodiles long before true crocodiles existed, according to a new study.
Published Is it COVID-19 or the flu? New sensor could tell you in 10 seconds


Have a cough, sore throat and congestion? Any number of respiratory viruses could be responsible. Today, scientists report using a single-atom-thick nanomaterial to build a device that can simultaneously detect the presence of the viruses that cause COVID-19 and the flu -- at much lower levels and much more quickly than conventional tests for either.
Published Nanophysics: The right twist


Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.
Published Graphene grows -- and we can see it


Graphene is the strongest of all materials. On top of that, it is exceptionally good at conducting heat and electrical currents, making it one of the most special and versatile materials we know. For all these reasons, the discovery of graphene was awarded the Nobel Prize in Physics in 2010. Yet, many properties of the material and its cousins are still poorly understood -- for the simple reason that the atoms they are made up of are very difficult to observe.
Published New simulation reveals secrets of exotic form of electrons called polarons


Conditions mapped for the first time of polaron characteristics in 2D materials. TACC's Frontera supercomputer generated quantum mechanical calculations on hexagonal boron nitride system of 30,000 atoms.
Published Uracil found in Ryugu samples


Samples from the asteroid Ryugu collected by the Hayabusa2 mission contain nitrogenous organic compounds, including the nucleobase uracil, which is a part of RNA.
Published Mind-control robots a reality?


Researchers have developed biosensor technology that will allow you to operate devices, such as robots and machines, solely through thought control.
Published Another crystalline layer on crystal surface as a precursor of crystal-to-crystal transition


Ice surfaces have a thin layer of water below its melting temperature of 0 degrees Celsius. Such premelting phenomenon is important for skating and snowflake growth. Similarly, liquid often crystallizes into a thin layer of crystal on a flat substrate before reaching its freezing temperature, i.e. prefreezing. The thickness of the surface layer usually increases and diverges as approaching the phase transition (such as melting and freezing) temperature. Besides premelting and prefreezing, whether similar surface phenomenon exists as a precursor of a phase transition has rarely been explored. Scientists now propose that a polymorphic crystalline layer may form on a crystal surface before the crystal-crystal phase transition and names it pre-solid-solid transition.
Published Nano cut-and-sew: New method for chemically tailoring layered nanomaterials could open pathways to designing 2D materials on demand


A new process that lets scientists chemically cut apart and stitch together nanoscopic layers of two-dimensional materials -- like a tailor altering a suit -- could be just the tool for designing the technology of a sustainable energy future. Researchers have developed a method for structurally splitting, editing and reconstituting layered materials, called MAX phases and MXenes, with the potential of producing new materials with very unusual compositions and exceptional properties.
Published Notre-Dame de Paris Cathedral was historical first in using iron reinforcements in the 12th century


The Notre-Dame de Paris is the first known cathedral of Gothic-style architecture to be initially constructed with extensive use of iron to bind stones together. The 2019 fire that significantly damaged the cathedral enabled analyses leading to this discovery.
Published Neolithic ceramics reveal dairy processing from milk of multiple species


A new study has found evidence of cheesemaking, using milk from multiple animals in Late Neolithic Poland.
Published 3D internal structure of rechargeable batteries revealed


Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.
Published Microscopy: Highest resolution in three dimensions


Researchers have developed a super-resolution microscopy method for the rapid differentiation of molecular structures in 3D.
Published Graphene quantum dots show promise as novel magnetic field sensors


Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.
Published Dinosaur claws used for digging and display


Dinosaur claws had many functions, but now a team has shown some predatory dinosaurs used their claws for digging or even for display.