Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Engineering: Graphene
Published Washable, transparent, and flexible OLED with MXene nanotechnology? (via sciencedaily.com)
Transparent and flexible displays, which have received a lot of attention in various fields including automobile displays, bio-healthcare, military, and fashion, are in fact known to break easily when experiencing small deformations. To solve this problem, active research is being conducted on many transparent and flexible conductive materials such as carbon nanotubes, graphene, silver nanowires, and conductive polymers.
Published Researchers put a new twist on graphite (via sciencedaily.com) Original source
Researchers report that it is possible to imbue graphite -- the bulk, 3D material found in No. 2 pencils -- with physical properties similar to graphite's 2D counterpart, graphene. Not only was this breakthrough unexpected, the team also believes its approach could be used to test whether similar types of bulk materials can also take on 2D-like properties. If so, 2D sheets won't be the only source for scientists to fuel technological revolutions. Bulk, 3D materials could be just as useful.
Published A bright future in eco-friendly light devices, just add dendrimers, cellulose, and graphene (via sciencedaily.com) Original source
Researchers have developed a light-emitting electrochemical cell using dendrimers, a material gaining popularity in the industry. Moreover, the team found that using biomass derived cellulose acetate as the electrolyte retains the cell's long-life span. Combined with a graphene electrode, the cell has the potential to light the way for a future of eco-friendly and flexible light-emitting devices.
Published 'Electronic skin' from bio-friendly materials can track human vital signs with ultrahigh precision (via sciencedaily.com) Original source
Researchers have used materials inspired by molecular gastronomy to create smart wearables that surpassed similar devices in terms of strain sensitivity. They integrated graphene into seaweed to create nanocomposite microcapsules for highly tunable and sustainable epidermal electronics. When assembled into networks, the tiny capsules can record muscular, breathing, pulse, and blood pressure measurements in real-time with ultrahigh precision.
Published Terahertz-to-visible light conversion for future telecommunications (via sciencedaily.com) Original source
A study demonstrates that graphene-based materials can be used to efficiently convert high-frequency signals into visible light, and that this mechanism is ultrafast and tunable. These outcomes open the path to exciting applications in near-future information and communication technologies.
Published Shining potential of missing atoms (via sciencedaily.com) Original source
Single photons have applications in quantum computation, information networks, and sensors, and these can be emitted by defects in the atomically thin insulator hexagonal boron nitride (hBN). Missing nitrogen atoms have been suggested to be the atomic structure responsible for this activity, but it is difficult to controllably remove them. A team has now shown that single atoms can be kicked out using a scanning transmission electron microscope under ultra-high vacuum.
Published Aluminium-ion batteries with improved storage capacity (via sciencedaily.com) Original source
Scientists develop positive electrode material using an organic redox polymer based on phenothiazine. Aluminium-ion batteries containing this material stored an unprecedented 167 milliampere hours per gram, outperforming batteries using graphite as electrode material. Aluminium-ion batteries are considered a promising alternative to conventional batteries that use scarce raw materials such as lithium.
Published Unveiling the nanoscale frontier: innovating with nanoporous model electrodes (via sciencedaily.com) Original source
Researchers have introduced a next-generation model membrane electrode that promises to revolutionize fundamental electrochemical research.
Published Producing large, clean 2D materials made easy (via sciencedaily.com) Original source
An international team of surface scientists has now developed a simple method to produce large and very clean 2D samples from a range of materials using three different substrates.
Published New priming method improves battery life, efficiency (via sciencedaily.com) Original source
Engineers have developed a readily scalable method to optimize a silicon anode priming method that increases lithium-ion battery performance by 22% to 44%.
Published With new experimental method, researchers probe spin structure in 2D materials for first time (via sciencedaily.com) Original source
In the study, a team of researchers describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation.
Published Symmetric graphene quantum dots for future qubits (via sciencedaily.com) Original source
Quantum dots in semiconductors such as silicon or gallium arsenide have long been considered hot candidates for hosting quantum bits in future quantum processors. Scientists have now shown that bilayer graphene has even more to offer here than other materials. The double quantum dots they have created are characterized by a nearly perfect electron-hole-symmetry that allows a robust read-out mechanism -- one of the necessary criteria for quantum computing.
Published Researchers design battery prototype with fiber-shaped cathode (via sciencedaily.com) Original source
In a new study, researchers made a cathode, or the positive end of a battery, in the shape of a thread-like fiber. The researchers were then able to use the fiber to create a zinc-ion battery prototype that could power a wrist watch.
Published New findings pave the way for stable organic solar cells that may enable cheap and renewable electricity generation (via sciencedaily.com) Original source
Organic solar cells show great promise for clean energy applications. However, photovoltaic modules made from organic semiconductors do not maintain their efficiency for long enough under sunlight for real world applications. Scientists have now revealed an important reason why organic solar cells rapidly degrade under operation. This new insight will drive the design of more stale materials for organic semiconductor-based photovoltaics, thus enabling cheap and renewable electricity generation.
Published Graphene 'tattoo' treats cardiac arrhythmia with light (via sciencedaily.com) Original source
Researchers have developed the first cardiac implant made from graphene, a two-dimensional super material with ultra-strong, lightweight and conductive properties. Similar in appearance to a child's temporary tattoo, the new graphene 'tattoo' implant is thinner than a single strand of hair yet still functions like a classical pacemaker.
Published Physicists discover transformable nano-scale electronic devices (via sciencedaily.com) Original source
The nano-scale electronic parts in devices like smartphones are solid, static objects that once designed and built cannot transform into anything else. But physicists have reported the discovery of nano-scale devices that can transform into many different shapes and sizes even though they exist in solid states.
Published Wonder material graphene claims yet another superlative (via sciencedaily.com) Original source
Researchers report record-high magnetoresistance that appears in graphene under ambient conditions.
Published Fully recyclable printed electronics ditch toxic chemicals for water (via sciencedaily.com) Original source
Engineers have produced fully recyclable printed electronics that replace the use of chemicals with water in the fabrication process. By bypassing the need for hazardous chemicals, the demonstration points down a path industry could follow to reduce its environmental footprint and human health risks.
Published Discovery of ferroelectricity in an elementary substance (via sciencedaily.com) Original source
Researchers have discovered a new single-element ferroelectric material that alters the current understanding of conventional ferroelectric materials and has future applications in data storage devices.
Published Strong ultralight material could aid energy storage, carbon capture (via sciencedaily.com) Original source
Materials scientists showed that fine-tuning interlayer interactions in a class of 2D polymers can determine the materials' loss or retention of desirable mechanical properties in multilayer or bulk form.