Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Space: Structures and Features
Published Deriving the fundamental limit of heat current in quantum mechanical many-particle systems


Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.
Published Hot Jupiter blows its top


The planet HAT-P-32b is losing so much of its atmospheric helium that the trailing gas tails are among the largest structures yet known any planet outside our solar system. Three-dimensional (3D) simulations helped model the flow of the planet's atmosphere. The scientists hope to widen their planet-observing net and survey 20 additional star systems to find more planets losing their atmosphere and learn about their evolution.
Published Striking gold with molecular mystery solution for potential clean energy


Hydrogen spillover is exactly what it sounds like. Small metal nanoparticles anchored on a thermally stable oxide, like silica, comprise a major class of catalysts, which are substances used to accelerate chemical reactions without being consumed themselves. The catalytic reaction usually occurs on the reactive -- and expensive -- metal, but on some catalysts, hydrogen atom-like equivalents literally spill from the metal to the oxide. These hydrogen-on-oxide species are called 'hydrogen spillover.'
Published Webb reveals new structures within iconic supernova


NASA's James Webb Space Telescope has begun the study of one of the most renowned supernovae, SN 1987A (Supernova 1987A). Located 168,000 light-years away in the Large Magellanic Cloud, SN 1987A has been a target of intense observations at wavelengths ranging from gamma rays to radio for nearly 40 years, since its discovery in February of 1987. New observations by Webb's NIRCam (Near-Infrared Camera) provide a crucial clue to our understanding of how a supernova develops over time to shape its remnant.
Published Scientists detect and validate the longest-period exoplanet found with TESS


Scientists have detected and validated two of the longest-period exoplanets found by TESS to date. These long period large exoplanets orbit a K dwarf star and belong to a class of planets known as warm Jupiters, which have orbital periods of 10-200 days and are at least six times Earth's radius. This recent discovery offers exciting research opportunities for the future of finding long-period planets that resemble those in our own solar system.
Published New giant planet evidence of possible planetary collisions


A Neptune-sized planet denser than steel has been discovered by an international team of astronomers, who believe its composition could be the result of a giant planetary clash.
Published Unprecedented gamma-ray burst explained by long-lived jet


While astrophysicists previously believed that only supernovae could generate long gamma-ray bursts (GRBs), a 2021 observation uncovered evidence that compact-object mergers also can generate the phenomenon. Now, a new simulation confirms and explains this finding. If the accretion disk around the black hole is massive, it launches a jet that lasts several seconds, matching the description of a long GRB from a merger.
Published A new way to capture and recycle carbon dioxide from industrial emissions


Carbon capture is a promising method to help slow climate change. With this approach, carbon dioxide (CO¬¬2) is trapped before it escapes into the atmosphere, but the process requires a large amount of energy and equipment. Now, researchers have designed a capture system using an electrochemical cell that can easily grab and release CO2. The device operates at room temperature and requires less energy than conventional, amine-based carbon-capture systems.
Published Telescopes help unravel pulsar puzzle


With a remarkable observational campaign that involved 12 telescopes both on the ground and in space, including three European Southern Observatory (ESO) facilities, astronomers have uncovered the strange behavior of a pulsar, a super-fast-spinning dead star. This mysterious object is known to switch between two brightness modes almost constantly, something that until now has been an enigma. But astronomers have now found that sudden ejections of matter from the pulsar over very short periods are responsible for the peculiar switches.
Published Hotter quantum systems can cool faster than initially colder equivalents


The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.
Published Mysterious Neptune dark spot detected from Earth for the first time


Using ESO's Very Large Telescope (VLT), astronomers have observed a large dark spot in Neptune's atmosphere, with an unexpected smaller bright spot adjacent to it. This is the first time a dark spot on the planet has ever been observed with a telescope on Earth. These occasional features in the blue background of Neptune's atmosphere are a mystery to astronomers, and the new results provide further clues as to their nature and origin.
Published Steam condenser coating could save 460M tons of CO2 annually


If coal and natural gas power generation were 2% more efficient, then, every year, there could be 460 million fewer tons of carbon dioxide released and 2 trillion fewer gallons of water used. A recent innovation to the steam cycle used in fossil fuel power generation could achieve this.
Published Rewriting the past and future of the universe



New research has improved the accuracy of the parameters governing the expansion of the Universe. More accurate parameters will help astronomers determine how the Universe grew to its current state, and how it will evolve in the future.
Published New type of star gives clues to mysterious origin of magnetars



Magnetars are the strongest magnets in the Universe. These super-dense dead stars with ultra-strong magnetic fields can be found all over our galaxy but astronomers don't know exactly how they form. Now, using multiple telescopes around the world, researchers have uncovered a living star that is likely to become a magnetar. This finding marks the discovery of a new type of astronomical object -- massive magnetic helium stars -- and sheds light on the origin of magnetars.
Published Clever coating turns lampshades into indoor air purifiers


Indoor air pollution may have met its match. Scientists have designed catalyst-coated lampshades that transform indoor air pollutants into harmless compounds. The lampshades work with halogen and incandescent light bulbs, and the team is extending the technology so it will also be compatible with LEDs.
Published Hundred-year storms? That's how long they last on Saturn


Megastorms regularly appear on Saturn, marring the relatively bland surface before disappearing. But radio observations show that the storms have long-lasting effects deeper in the atmosphere, in particular in the distribution of ammonia. Using NRAO's Very Large Array, astronomers see such impacts from storms that happened hundreds of years ago. The findings will help explain the differences between storms on the gas giants Saturn and Jupiter.
Published Webb reveals colors of Earendel, most distant star ever detected


NASA's James Webb Space Telescope has followed up on observations by the Hubble Space Telescope of the farthest star ever detected in the very distant universe, within the first billion years after the big bang. Webb's NIRCam (Near-Infrared Camera) instrument reveals the star to be a massive B-type star more than twice as hot as our Sun, and about a million times more luminous.
Published Geomagnetic field protects Earth from electron showers



Geophysicists studied the activity of high energy electrons and clarified the unexpected protective role of the geomagnetic field surrounding the Earth.
Published Gas streamers feed triple baby stars



New observations and simulations of three spiral arms of gas feeding material to three protostars forming in a trinary system have clarified the formation of multi-star systems.
Published Single drop of ethanol to revolutionize nanosensor manufacture


Engineers have developed a breakthrough technique to make the processing of nanosensors cheaper, greener and more effective by using a single drop of ethanol to replace heat processing of nanoparticle networks, allowing a wider range of materials to be used to make these sensors.