Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Researchers spying for signs of life among exoplanet atmospheres      (via sciencedaily.com)     Original source 

The next generation of advanced telescopes could sharpen the hunt for potential extraterrestrial life by closely scrutinizing the atmospheres of nearby exoplanets, new research suggests.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Astronomers spot 18 black holes gobbling up nearby stars      (via sciencedaily.com)     Original source 

Scientists have identified 18 new tidal disruption events (TDEs) -- extreme instances when a nearby star is tidally drawn into a black hole and ripped to shreds. The detections more than double the number of known TDEs in the nearby universe.

Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Astronomers unravel mysteries of planet formation and evolution in distant planetary system      (via sciencedaily.com)     Original source 

TOI-1136, a dwarf star located more than 270 light years from Earth, is host to six confirmed exoplanets and a seventh as yet unconfirmed candidate. The system has provided a rich source of information on planet formation and evolution in a young solar system. Researchers used a variety of tools to compile radial velocity and transit timing variation readings to derive highly precise measurements of the exoplants' masses, orbital information and atmospheres.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Stars travel more slowly at Milky Way's edge      (via sciencedaily.com)     Original source 

Physicists discovered stars near the edge of the Milky Way travel more slowly than those closer to its center -- a surprise suggesting our galaxy's gravitational core may have less dark matter than previously thought.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

'Old smokers' and 'squalling newborns' among hidden stars spotted for first time      (via sciencedaily.com)     Original source 

'Hidden' stars including a new type of elderly giant nicknamed an 'old smoker' have been spotted for the first time by astronomers. The mystery objects exist at the heart of our Milky Way galaxy and can sit quietly for decades -- fading almost to invisibility -- before suddenly puffing out clouds of smoke, according to a new study.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Faint features in galaxy NGC 5728 revealed      (via sciencedaily.com)     Original source 

A new study describes the best method to improve images obtained by the James Webb Science Telescope (JWST) using a mathematical approach called deconvolution.

Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Astrophysical jet caught in a 'speed trap'      (via sciencedaily.com)     Original source 

The microquasar SS 433 stands out as one of the most intriguing objects within our Milky Way. A pair of oppositely directed beams of plasma ('jets') spirals away perpendicularly from the binary systems disk's surface at just over a quarter of the speed of light. The H.E.S.S. observatory in Namibia has now succeeded in detecting very high energy gamma rays from the jets of SS 433, and identifying the exact location within the jets of one of the galaxy's most effective particle accelerators.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Shining a light on the hidden properties of quantum materials      (via sciencedaily.com)     Original source 

Certain materials have desirable properties that are hidden and scientists can use light to uncover these properties. Researchers have used an advanced optical technique, based on terahertz time-domain spectroscopy, to learn more about a quantum material called Ta2NiSe5 (TNS).

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers add a 'twist' to classical material design      (via sciencedaily.com)     Original source 

Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.

Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

What coffee with cream can teach us about quantum physics      (via sciencedaily.com)     Original source 

A new advancement in theoretical physics could, one day, help engineers develop new kinds of computer chips that might store information for longer in very small objects.

Energy: Nuclear Physics: General Physics: Quantum Physics
Published

Gravity helps show strong force strength in the proton      (via sciencedaily.com)     Original source 

New research conducted by nuclear physicists is using a method that connects theories of gravitation to interactions among the smallest particles of matter. The result is insight into the strong force, a powerful mediator of particle interactions in the subatomic realm. The research has revealed, for the first time, a snapshot of the distribution of the shear strength of the strong force inside the proton -- or how strong an effort must be to overcome the strong force to move an object it holds in its grasp. At its peak, the nuclear physicists found that a force of over four metric tons would be required to overcome the binding power of the strong force.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers find new multiphoton effect within quantum interference of light      (via sciencedaily.com)     Original source 

An international team of researchers has disproved a previously held assumption about the impact of multiphoton components in interference effects of thermal fields (e.g. sunlight) and parametric single photons (generated in non-linear crystals).

Computer Science: Quantum Computers Physics: Acoustics and Ultrasound Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Towards the quantum of sound      (via sciencedaily.com)     Original source 

A team of scientists has succeeded in cooling traveling sound waves in wave-guides considerably further than has previously been possible using laser light. This achievement represents a significant move towards the ultimate goal of reaching the quantum ground state of sound in wave-guides. Unwanted noise generated by the acoustic waves at room temperature can be eliminated. This experimental approach both provides a deeper understanding of the transition from classical to quantum phenomena of sound and is relevant to quantum communication systems and future quantum technologies.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Lightest black hole or heaviest neutron star? MeerKAT uncovers a mysterious object in Milky Way      (via sciencedaily.com)     Original source 

An international team of astronomers have found a new and unknown object in the Milky Way that is heavier than the heaviest neutron stars known and yet simultaneously lighter than the lightest black holes known.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

Unlocking the secrets of quasicrystal magnetism: Revealing a novel magnetic phase diagram      (via sciencedaily.com)     Original source 

Non-Heisenberg-type approximant crystals have many interesting properties and are intriguing for researchers of condensed matter physics. However, their magnetic phase diagrams, which are crucial for realizing their potential, remain completely unknown. Now, a team of researchers has constructed the magnetic phase diagram of a non-Heisenberg Tsai-type 1/1 gold-gallium-terbium approximant crystal. This development marks a significant step forward for quasicrystal research and for the realization of magnetic refrigerators and spintronic devices.

Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features
Published

Origin of intense light in supermassive black holes and tidal disruption events revealed      (via sciencedaily.com)     Original source 

A new study is a significant breakthrough in understanding Tidal Disruption Events (TDEs) involving supermassive black holes. The new simulations accurately replicate the entire sequence of a TDE from stellar disruption to the peak luminosity of the resulting flare.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Astronomers detect oldest black hole ever observed      (via sciencedaily.com)     Original source 

Researchers have discovered the oldest black hole ever observed, dating from the dawn of the universe, and found that it is 'eating' its host galaxy to death.

Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Chemists create a 2D heavy fermion      (via sciencedaily.com)     Original source 

Researchers have synthesized the first 2D heavy fermion. The material, a layered intermetallic crystal composed of cerium, silicon, and iodine (CeSiI), has electrons that are 1000x heavier and is a new platform to explore quantum phenomena.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Higher measurement accuracy opens new window to the quantum world      (via sciencedaily.com)     Original source 

A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).