Showing 20 articles starting at article 881
< Previous 20 articles Next 20 articles >
Categories: Physics: Quantum Physics, Space: Structures and Features
Published Securing supply chains with quantum computing


New research in quantum computing is moving science closer to being able to overcome supply-chain challenges and restore global security during future periods of unrest.
Published When the light is neither 'on' nor 'off' in the nanoworld


Scientists detect the quantum properties of collective optical-electronic oscillations on the nanoscale. The results could contribute to the development of novel computer chips.
Published Four classes of planetary systems


Astronomers have long been aware that planetary systems are not necessarily structured like our solar system. Researchers have now shown that there are in fact four types of planetary systems.
Published Researchers detail never-before-seen properties in a family of superconducting Kagome metals


Researchers have used an innovative new strategy combining nuclear magnetic resonance imaging and a quantum modeling theory to describe the microscopic structure of Kagome superconductor RbV3Sb5 at 103 degrees Kelvin, which is equivalent to about 275 degrees below 0 degrees Fahrenheit.
Published Scientists boost quantum signals while reducing noise


Researchers have developed a special type of amplifier that uses a technique known as squeezing to amplify quantum signals by a factor of 100 while reducing the noise that is inherent in quantum systems by an order of magnitude. Their device is the first to demonstrate squeezing over a broad frequency bandwidth of 1.75 gigahertz, nearly two orders of magnitude higher than other architectures.
Published Hubble captures the start of a new spoke season at Saturn


Since their discovery by NASA's Voyager mission in the 1980s, temporary 'spoke' features across Saturn's rings have fascinated scientists, yet eluded explanation. They have been observed in the years preceding and following the planet's equinox, becoming more prominent as the date approaches. Saturn's upcoming autumnal equinox of the northern hemisphere on May 6, 2025, means that spoke season has come again. NASA's Hubble Space Telescope will be on the job studying the spokes, thanks to time dedicated to Saturn in the mission's ongoing Outer Planet Atmospheres Legacy (OPAL) program. Are the smudgy features related to Saturn's magnetic field and its interaction with the solar wind, as prevailing theory suggests? Confirmation could come in this spoke season, as scientists combine archival data from NASA's Cassini mission with new Hubble observations.
Published Distortion-free forms of structured light


Research offers a new approach to studying complex light in complex systems, such as transporting classical and quantum light through optical fiber, underwater channels, living tissue and other highly aberrated systems.
Published Scientists make major breakthrough in developing practical quantum computers that can solve big challenges of our time


Researchers have demonstrated that quantum bits (qubits) can directly transfer between quantum computer microchips and demonstrated this with record-breaking connection speed and accuracy. This breakthrough resolves a major challenge in building quantum computers large and powerful enough to tackle complex problems that are of critical importance to society.
Published Footprints of galactic immigration uncovered in Andromeda galaxy


Astronomers have uncovered striking new evidence for a mass migration of stars into the Andromeda Galaxy. Intricate patterns in the motions of stars reveal an immigration history very similar to that of the Milky Way.
Published Researchers focus AI on finding exoplanets


New research reveals that artificial intelligence can be used to find planets outside of our solar system. The recent study demonstrated that machine learning can be used to find exoplanets, information that could reshape how scientists detect and identify new planets very far from Earth.
Published Star formation in distant galaxies by the James Webb Space Telescope


Thanks to the James Webb Space Telescope's first images of galaxy clusters, researchers have, for the very first time, been able to examine very compact structures of star clusters inside galaxies, so-called clumps.
Published 'Engine' of luminous merging galaxies pinpointed for the first time


Roughly 500 million light-years away, near the constellation Delphinus, two galaxies are colliding. Known as merging galaxy IIZw096, the luminous phenomenon is obscured by cosmic dust, but researchers first identified a bright, energetic source of light 12 years ago. Now, with a more advanced telescope, the team has pinpointed the precise location of what they have dubbed the 'engine' of the merging galaxy.
Published Entangled atoms cross quantum network from one lab to another


Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.
Published Hubble directly measures mass of a lone white dwarf


Astronomers have directly measured the mass of a single, isolated white dwarf -- the surviving core of a burned-out, Sun-like star. Researchers found that the white dwarf is 56 percent the mass of our Sun. This agrees with earlier theoretical predictions of the white dwarf's mass and corroborates current theories of how white dwarfs evolve as the end product of a typical star's evolution. The unique observation yields insights into theories of the structure and composition of white dwarfs.
Published Researchers devise a new path toward 'quantum light'


Researchers have theorized a new mechanism to generate high-energy 'quantum light', which could be used to investigate new properties of matter at the atomic scale.
Published Amplified search for new forces


In the search for new forces and interactions beyond the Standard Model, an international team of researchers has now taken a good step forward. The researchers are using an amplification technique based on nuclear magnetic resonance. They use their experimental setup to study a particular exotic interaction between spins: a parity-violating interaction mediated by a new hypothetical exchange particle, called a Z' boson, which exists in addition to the Z boson mediating the weak interaction in the standard Model.
Published Astronomers uncover a one-in-ten-billion binary star system: Kilonova progenitor system


Astronomers using data from the SMARTS 1.5-meter Telescope at the Cerro Tololo Inter-American Observatory (CTIO), have made the first confirmed detection of a star system that will one day form a kilonova -- the ultra-powerful, gold-producing explosion created by merging neutron stars. These systems are so phenomenally rare that only about 10 such systems are thought to exist in the entire Milky Way.
Published 'Ghostly' neutrinos provide new path to study protons


Scientists have discovered a new way to investigate the structure of protons using neutrinos, known as 'ghost particles.'
Published The bubbling universe: A previously unknown phase transition in the early universe


What happened shortly after the universe was born in the Big Bang and began to expand? Bubbles occurred and a previously unknown phase transition happened, according to particle physicists.
Published Thin, lightweight layer provides radiation barrier for perovskites in space, protection from elements on Earth


An ultrathin protective coating proves sufficient to protect a perovskite solar cell from the harmful effects of space and harden it against environmental factors on Earth, according to newly published research.