Computer Science: Quantum Computers
Published

New quantum effect demonstrated for the first time: Spinaron, a rugby in a ball pit      (via sciencedaily.com)     Original source 

Experimental physicists have demonstrated a new quantum effect aptly named the 'spinaron.' In a meticulously controlled environment and using an advanced set of instruments, they managed to prove the unusual state a cobalt atom assumes on a copper surface. This revelation challenges the long-held Kondo effect -- a theoretical concept developed in the 1960s, and which has been considered the standard model for the interaction of magnetic materials with metals since the 1980s.

Offbeat: General Offbeat: Space Space: Astronomy Space: General Space: Structures and Features Space: The Solar System
Published

Uranus aurora discovery offers clues to habitable icy worlds      (via sciencedaily.com)     Original source 

Astronomers confirm the existence of an infrared (IR) aurora on Uranus. This could help astronomers identify exoplanets that might support life, a large number of which are icy worlds.

Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Venus had Earth-like plate tectonics billions of years ago, study suggests      (via sciencedaily.com)     Original source 

Venus, may have once had tectonic plate movements similar to those believed to have occurred on early Earth, a new study found. The finding sets up tantalizing scenarios regarding the possibility of early life on Venus, its evolutionary past and the history of the solar system.

Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features
Published

Deep learning speeds up galactic calculations      (via sciencedaily.com)     Original source 

Supernovae, exploding stars, play a critical role in the formation and evolution of galaxies. However, key aspects of them are notoriously difficult to simulate accurately in reasonably short amounts of time. For the first time, a team of researchers apply deep learning to the problem of supernova simulation. Their approach can speed up the simulation of supernovae, and therefore of galaxy formation and evolution as well. These simulations include the evolution of the chemistry which led to life.

Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Using sound to test devices, control qubits      (via sciencedaily.com)     Original source 

Researchers have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators. What's more, these vacancies could also be used for acoustically-controlled quantum information processing, providing a new way to manipulate quantum states embedded in this commonly-used material. 

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Massive space explosion observed creating elements needed for life      (via sciencedaily.com)     Original source 

Scientists have observed the creation of rare chemical elements in the second-brightest gamma-ray burst ever seen -- casting new light on how heavy elements are made.

Space: Astronomy Space: Cosmology Space: Structures and Features
Published

First detection of heavy element from star merger      (via sciencedaily.com)     Original source 

A team of scientists has used multiple space and ground-based telescopes to observe an exceptionally bright gamma-ray burst, GRB 230307A, and identify the neutron star merger that generated an explosion that created the burst. Webb also helped scientists detect the chemical element tellurium in the explosion's aftermath.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Black holes could come in 'perfect pairs' in an ever expanding Universe      (via sciencedaily.com)     Original source 

Researchers have shown it's theoretically possible for black holes to exist in perfectly balanced pairs -- held in equilibrium by a cosmological force -- mimicking a single black hole.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Electrical control of quantum phenomenon could improve future electronic devices      (via sciencedaily.com)     Original source 

A new electrical method to conveniently change the direction of electron flow in some quantum materials could have implications for the development of next-generation electronic devices and quantum computers. A team of researchers has developed and demonstrated the method in materials that exhibit the quantum anomalous Hall (QAH) effect -- a phenomenon in which the flow of electrons along the edge of a material does not lose energy.

Space: Astrophysics Space: General Space: Structures and Features
Published

Grasping the three-dimensional morphology of kilonovae      (via sciencedaily.com)     Original source 

An advanced new three-dimensional (3D) computer simulation of the light emitted following a merger of two neutron stars has produced a similar sequence of spectroscopic features to an observed kilonova. '

Computer Science: General Computer Science: Quantum Computers
Published

Self-correcting quantum computers within reach?      (via sciencedaily.com)     Original source 

Quantum computers promise to reach speeds and efficiencies impossible for even the fastest supercomputers of today. Yet the technology hasn't seen much scale-up and commercialization largely due to its inability to self-correct. Quantum computers, unlike classical ones, cannot correct errors by copying encoded data over and over. Scientists had to find another way. Now, a new paper illustrates a quantum computing platform's potential to solve the longstanding problem known as quantum error correction.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

NASA's Webb captures an ethereal view of NGC 346      (via sciencedaily.com)     Original source 

One of the greatest strengths of NASA's James Webb Space Telescope is its ability to give astronomers detailed views of areas where new stars are being born. The latest example, showcased here in a new image from Webb's Mid-Infrared Instrument (MIRI), is NGC 346 -- the brightest and largest star-forming region in the Small Magellanic Cloud.

Computer Science: General Computer Science: Quantum Computers
Published

Exploring parameter shift for quantum fisher information      (via sciencedaily.com)     Original source 

Scientists have developed a technique called 'Time-dependent Stochastic Parameter Shift' in the realm of quantum computing and quantum machine learning. This breakthrough method revolutionizes the estimation of gradients or derivatives of functions, a crucial step in many computational tasks.

Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Researchers capture first-ever afterglow of huge planetary collision in outer space      (via sciencedaily.com)     Original source 

A chance social media post by an eagle-eyed amateur astronomer sparked the discovery of an explosive collision between two giant planets, which crashed into each other in a distant space system 1,800 light years away from planet Earth.

Computer Science: General Computer Science: Quantum Computers
Published

A new way to erase quantum computer errors      (via sciencedaily.com)     Original source 

Researchers have demonstrated a type of quantum eraser. The physicists show that they can pinpoint and correct for mistakes in quantum computing systems known as 'erasure' errors. 

Space: Astronomy Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Finding explanation for Milky Way's warp      (via sciencedaily.com)     Original source 

Though scientists have long known through observational data that the Milky Way is warped and its edges are flared like a skirt, no one could explain why. Now, astronomers have performed the first calculations that fully explain this phenomenon, with compelling evidence pointing to the Milky Way's envelopment in an off-kilter halo of dark matter. 

Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Stellar fountain of youth with turbulent formation history in the center of our galaxy      (via sciencedaily.com)     Original source 

An unexpectedly high number of young stars has been identified in the direct vicinity of a supermassive black hole and water ice has been detected at the center of our galaxy.

Space: General Space: Structures and Features Space: The Solar System
Published

Astronomers discover first step toward planet formation      (via sciencedaily.com)     Original source 

Astronomers have gotten very good at spotting the signs of planet formation around stars. But for a complete understanding of planet formation, we also need to study examples where planet formation has not yet started. Looking for something and not finding it can be even more difficult than finding it sometimes, but new detailed observations of the young star DG Taurus show that it has a smooth protoplanetary disk without signs of planet formation. This successful non-detection of planet formation may indicate that DG Taurus is on the eve of planet formation.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Pulsars may make dark matter glow      (via sciencedaily.com)     Original source 

The central question in the ongoing hunt for dark matter is: what is it made of? One possible answer is that dark matter consists of particles known as axions. A team of astrophysicists has now shown that if dark matter consists of axions, it may reveal itself in the form of a subtle additional glow coming from pulsating stars.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Twisted science: New quantum ruler to explore exotic matter      (via sciencedaily.com)     Original source 

Researchers have developed a 'quantum ruler' to measure and explore the strange properties of multilayered sheets of graphene, a form of carbon. The work may also lead to a new, miniaturized standard for electrical resistance that could calibrate electronic devices directly on the factory floor, eliminating the need to send them to an off-site standards laboratory.