Showing 20 articles starting at article 1
Categories: Energy: Batteries, Engineering: Robotics Research
Published Dormant capacity reserve in lithium-ion batteries detected



Lithium iron phosphate is one of the most important materials for batteries in electric cars, stationary energy storage systems and tools. It has a long service life, is comparatively inexpensive and does not tend to spontaneously combust. Energy density is also making progress. However, experts are still puzzled as to why lithium iron phosphate batteries undercut their theoretical electricity storage capacity by up to 25 per cent in practice.
Published Development of a model capable of predicting the cycle lives of high-energy-density lithium-metal batteries



Scientists have developed a model capable of predicting the cycle lives of high-energy-density lithium-metal batteries by applying machine learning methods to battery performance data. The model proved able to accurately estimate batteries' longevity by analyzing their charge, discharge and voltage relaxation process data without relying on any assumption about specific battery degradation mechanisms. The technique is expected to be useful in improving the safety and reliability of devices powered by lithium-metal batteries.
Published Engineers design tiny batteries for powering cell-sized robots



A zinc-air microbattery could enable the deployment of cell-sized, autonomous robots for drug delivery within in the human body, as well as other applications such as locating leaks in gas pipelines.
Published Research provides a roadmap for improving electrochemical performance



A study expands understanding on how electrons move through the conductive parts of complex fluids found in electrochemical devices such as batteries. This work can help overcome existing knowledge gaps for engineers seeking to improve the performance of these devices.
Published Robot planning tool accounts for human carelessness



A new algorithm may make robots safer by making them more aware of human inattentiveness. In computerized simulations of packaging and assembly lines where humans and robots work together, the algorithm developed to account for human carelessness improved safety by about a maximum of 80% and efficiency by about a maximum of 38% compared to existing methods.
Published Intelligent soft robotic clothing for automatic thermal adaptation in extreme heat



As global warming intensifies, people increasingly suffer from extreme heat. For those working in a high-temperature environment indoors or outdoors, keeping thermally comfortable becomes particularly crucial. A team has now developed thermally-insulated and breathable soft robotic clothing that can automatically adapt to changing ambient temperatures, thereby helping to ensure worker safety in hot environments.
Published A method that paves the way for improved fuel cell vehicles



More efficient and longer-lasting fuel cells are essential for fuel cell-powered heavy-duty hydrogen vehicles to be an alternative to combustion fuelled counterparts. Researchers have developed an innovative method to study and understand how parts of fuel cells degrade over time. This is an important step towards the improved performance of fuel cells and them becoming commercially successful.
Published Delivery robots' green credentials make them more attractive to consumers



The smaller carbon footprint, or wheel print, of automatic delivery robots can encourage consumers to use them when ordering food, according to a new study. The suitcase-sized, self-driving electric vehicles are much greener than many traditional food delivery methods because they have low, or even zero, carbon emissions. In this study, participants who had more environmental awareness and knowledge about carbon emissions were more likely to choose the robots as a delivery method. The green influence went away though when people perceived the robots as a high-risk choice -- meaning they worried that their food would be late, cold or otherwise spoiled before it arrived.
Published New method for orchestrating successful collaboration among robots



New research shows that programming robots to create their own teams and voluntarily wait for their teammates results in faster task completion, with the potential to improve manufacturing, agriculture and warehouse automation.
Published Engineers make tunable, shape-changing metamaterial inspired by vintage toys



Common push puppet toys in the shapes of animals and popular figures can move or collapse with the push of a button at the bottom of the toys' base. Now, a team of engineers has created a new class of tunable dynamic material that mimics the inner workings of push puppets, with applications for soft robotics, reconfigurable architectures and space engineering.
Published Artificial compound eye to revolutionize robotic vision at lower cost but higher sensitivity



A research team has recently developed a novel artificial compound eye system that is not only more cost-effective, but demonstrates a sensitivity at least twice that of existing market products in small areas. The system promises to revolutionize robotic vision, enhance robots' abilities in navigation, perception and decision-making, while promoting commercial application and further development in human-robot collaboration.
Published Turning unused signals such as Wi-Fi into energy for electronics



We are constantly surrounded by electromagnetic waves such as Wi-Fi. Researchers tested a device to convert this ambient energy into energy for electronic devices.
Published 'Amphibious' sensors make new, waterproof technologies possible



Researchers have demonstrated a technique for creating sensors that can function both in air and underwater. The approach paves the way for 'amphibious' sensors with applications ranging from wildlife monitoring to biomedical applications.
Published Towards smart cities: Predicting soil liquefaction risk using artificial intelligence



Soil liquefaction that results in infrastructure damage has long been a point of contention for urban planners and engineers. Accurately predicting the soil liquefaction risk of a region could help overcome this challenge. Accordingly, researchers applied artificial intelligence to generate soil liquefaction risk maps, superseding already published risk maps.
Published Shape-shifting 'transformer bots' inspired by origami



Inspired by the paper-folding art of origami, engineers have discovered a way to make a single plastic cubed structure transform into more than 1,000 configurations using only three active motors.
Published Robotics: Self-powered 'bugs' can skim across water to detect environmental data



Researchers have developed a self-powered 'bug' that can skim across the water, and they hope it will revolutionize aquatic robotics.
Published Faster, cleaner way to extract lithium from battery waste



Researchers uncover a rapid, efficient and environmentally friendly method for selective lithium recovery using microwave radiation and a readily biodegradable solvent.
Published Scientists work to build 'wind-up' sensors



An international team of scientists has shown that twisted carbon nanotubes can store three times more energy per unit mass than advanced lithium-ion batteries. The finding may advance carbon nanotubes as a promising solution for storing energy in devices that need to be lightweight, compact, and safe, such as medical implants and sensors.
Published New understanding of fly behavior has potential application in robotics, public safety



Scientists have identified an automatic behavior in flies that helps them assess wind conditions -- its presence and direction -- before deploying a strategy to follow a scent to its source. The fact that they can do this is surprising -- can you tell if there's a gentle breeze if you stick your head out of a moving car? Flies aren't just reacting to an odor with a preprogrammed response: they are responding in context-appropriate manner. This knowledge potentially could be applied to train more sophisticated algorithms for scent-detecting drones to find the source of chemical leaks.
Published New battery-free technology to power electronic devices using ambient radiofrequency signals



Researchers demonstrated a novel technique to efficiently convert ambient low-power radiofrequency signals into DC power. This 'rectifier' technology can be easily integrated into energy harvesting modules to power electronic devices and sensors, enabling battery-free operation.