Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Engineering: Robotics Research
Published Physicists show that light can generate electricity even in translucent materials



Some materials are transparent to light of a certain frequency. When such light is shone on them, electrical currents can still be generated, contrary to previous assumptions. Scientists have managed to prove this.
Published Energy trades could help resolve Nile conflict



Scientists have shed light on a new, transformative approach that could help resolve a dispute over the Nile river's water resources.
Published Scientists capture X-rays from upward positive lightning



Researchers have for the first time recorded X-rays being produced at the beginning of upward positive lightning flashes; an observation that gives important insight into the origins of this rare -- and particularly dangerous -- form of lightning.
Published Robotic nerve 'cuffs' could help treat a range of neurological conditions



Researchers have developed tiny, flexible devices that can wrap around individual nerve fibers without damaging them. The researchers combined flexible electronics and soft robotics techniques to develop the devices, which could be used for the diagnosis and treatment of a range of disorders, including epilepsy and chronic pain, or the control of prosthetic limbs.
Published New offshore wind turbines can take away energy from existing ones



Interactions between wind turbines could reduce power output by 30% in proposed offshore wind farm areas along the East Coast, new research has found. In all, the farms could still meet 60% of the electricity demand of New England.
Published A shortcut for drug discovery



For most human proteins, there are no small molecules known to bind them chemically (so called 'ligands'). Ligands frequently represent important starting points for drug development but this knowledge gap critically hampers the development of novel medicines. Researchers at CeMM, in a collaboration with Pfizer, have now leveraged and scaled a method to measure the binding activity of hundreds of small molecules against thousands of human proteins. This large-scale study revealed tens of thousands of ligand-protein interactions that can now be explored for the development of chemical tools and therapeutics. Moreover, powered by machine learning and artificial intelligence, it allows unbiased predictions of how small molecules interact with all proteins present in living human cells. These groundbreaking results have been published in the journal Science (DOI: 10.1126/science.adk5864), and all generated data and models are freely available for the scientific community.
Published Key to efficient and stable organic solar cells



A team of researchers has made a significant breakthrough in the field of organic photovoltaics.
Published How electric vehicle drivers can escape range anxiety



Two of the biggest challenges faced by new and potential electric vehicle (EV) drivers are range anxiety and speed of charging, but these shouldn't have to be challenges at all. Researchers discovered that a change in refueling mindset, rather than improving the size or performance of the battery, could be the answer to these concerns.
Published Why can't robots outrun animals?



Robotics engineers have worked for decades and invested many millions of research dollars in attempts to create a robot that can walk or run as well as an animal. And yet, it remains the case that many animals are capable of feats that would be impossible for robots that exist today.
Published This salt battery harvests osmotic energy where the river meets the sea



Estuaries -- where freshwater rivers meet the salty sea -- are great locations for birdwatching and kayaking. In these areas, waters containing different salt concentrations mix and may be sources of sustainable, 'blue' osmotic energy. Researchers report creating a semipermeable membrane that harvests osmotic energy from salt gradients and converts it to electricity. The new design had an output power density more than two times higher than commercial membranes in lab demonstrations.
Published A simple 'twist' improves the engine of clean fuel generation



Researchers have found a way to super-charge the 'engine' of sustainable fuel generation -- by giving the materials a little twist. The researchers are developing low-cost light-harvesting semiconductors that power devices for converting water into clean hydrogen fuel, using just the power of the sun. These semiconducting materials, known as copper oxides, are cheap, abundant and non-toxic, but their performance does not come close to silicon, which dominates the semiconductor market.
Published Magnetic microcoils unlock targeted single-neuron therapies for neurodegenerative disorders



Researchers deploy an array of microscopic coils to create a magnetic field and stimulate individual neurons. The magnetic field can induce an electric field in any nearby neurons, the same effect created by an electrode but much more precise. They used an array of eight coils, which combined can induce electric fields using much less current per coil, and employed soft magnetic materials, which boost the magnetic strength of the coils. The researchers constructed a prototype of their coil array, called MagPatch, and encapsulated it within a biocompatible coating.
Published Gentle defibrillation for the heart



Using light pulses as a model for electrical defibrillation, scientists developed a method to assess and modulate the heart function. The research team has thus paved the way for an efficient and direct treatment for cardiac arrhythmias. This may be an alternative for the strong and painful electrical shocks currently used.
Published Manipulating the geometry of 'electron universe' in magnets



Researchers have discovered a unique property, the quantum metric, within magnetic materials, altering the 'electron universe' geometry. This distinct electric signal challenges traditional electrical conduction and could revolutionize spintronic devices.
Published A flexible and efficient DC power converter for sustainable-energy microgrids



A new DC-DC power converter is superior to previous designs and paves the way for more efficient, reliable and sustainable energy storage and conversion solutions. The development can efficiently interface with a wide range of energy sources while enhancing system stability and simplicity at an unprecedented efficiency.
Published Octopus inspires new suction mechanism for robots



A new robotic suction cup which can grasp rough, curved and heavy stone, has been developed by scientists.
Published Mess is best: Disordered structure of battery-like devices improves performance



The energy density of supercapacitors -- battery-like devices that can charge in seconds or a few minutes -- can be improved by increasing the 'messiness' of their internal structure. Researchers used experimental and computer modelling techniques to study the porous carbon electrodes used in supercapacitors. They found that electrodes with a more disordered chemical structure stored far more energy than electrodes with a highly ordered structure.
Published Novel material supercharges innovation in electrostatic energy storage



Scientists have developed artificial heterostructures made of freestanding 2D and 3D membranes that have an energy density up to 19 times higher than commercially available capacitors.
Published An ink for 3D-printing flexible devices without mechanical joints



Researchers are targeting the next generation of soft actuators and robots with an elastomer-based ink for 3D printing objects with locally changing mechanical properties, eliminating the need for cumbersome mechanical joints.
Published Clearing the air: Wind farms more land efficient than previously thought



Wind power is a source of energy that is both affordable and renewable. However, decision-makers have been reluctant to invest in wind energy due to a perception that wind farms require a lot of land compared to electric power plants driven by fossil fuels. Research was based on the assessment of the land-use of close to 320 wind farms in the U.S. paints a very different picture.