Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Engineering: Robotics Research
Published Engineers harvest abundant clean energy from thin air, 24/7



A team of engineers has recently shown that nearly any material can be turned into a device that continuously harvests electricity from humidity in the air. Researchers describe the 'generic Air-gen effect'-- nearly any material can be engineered with nanopores to harvest, cost effective, scalable, interruption-free electricity. The secret lies in being able to pepper the material with nanopores less than 100 nanometers in diameter.
Published Breakthrough in computer chip energy efficiency could cut data center electricity use



Researchers have made a breakthrough toward reducing the energy consumption of the photonic chips used in data centers and supercomputers.
Published Calcium rechargeable battery with long cycle life



With the use of electric vehicles and grid-scale energy storage systems on the rise, the need to explore alternatives to lithium-ion batteries has never been greater. Researchers have recently developed a prototype calcium metal rechargeable battery capable of 500 cycles of repeated charge-discharge -- the benchmark for practical use. The breakthrough was made thanks to the development of a copper sulfide nanoparticle/carbon composite cathode and a hydride-based electrolyte.
Published Researchers examine cooling power plants with brackish groundwater



Nontraditional water sources can be deployed to help cope with climate-induced water risks and tackle the increasing water demand for decarbonization of fossil fuel-fired power plants, but that could increase the cost of electricity generation by 8 percent to 10 percent.
Published Researchers build bee robot that can twist



A robotic bee that can fly fully in all directions has been developed. With four wings made out of carbon fiber and mylar as well as four light-weight actuators to control each wing, the Bee++ prototype is the first to fly stably in all directions. That includes the tricky twisting motion known as yaw, with the Bee++ fully achieving the six degrees of free movement that a typical flying insect displays.
Published Effects of crypto mining on Texas power grid



Scientists are working to understand how cryptocurrency mining impacts the power grid and how to use this information for further research, education and policymaking.
Published Communities should reconsider walking away from curbside recycling, study shows



Researchers took a deep dive into the economic and environmental value of community recycling efforts and compared it to the value of other climate change mitigation practices, concluding it provides a return on investment.
Published New supply chain model to empower seabound hydrogen economy



A team of researchers has created a new supply chain model which could empower the international hydrogen renewable energy industry.
Published Demystifying vortex rings in nuclear fusion, supernovae



Better understanding the formation of swirling, ring-shaped disturbances -- known as vortex rings -- could help nuclear fusion researchers compress fuel more efficiently, bringing it closer to becoming a viable energy source. A mathematical model linking these vortices with more pedestrian types, like smoke rings, could help engineers control their behavior in power generation and more.
Published Physical chemists develop photochromic active colloids shedding light on the development of new smart active materials



In nature, the skin of cephalopods (animals with tentacles attached to the head) exhibits unparalleled camouflage ability. Their skin contains pigment groups that can sense changes in environmental light conditions and adjust their appearance through the action of pigment cells. Although intricate in nature, this colour-changing ability is fundamentally based on a mechanical mechanism in which pigment particles are folded or unfolded under the control of radial muscles. Inspired by this natural process, a research team forms dynamic photochromic nanoclusters by mixing cyan, magenta and yellow microbeads, achieving photochromism on a macro scale.
Published An electric vehicle battery for all seasons



Scientists have developed a fluorine-containing electrolyte for lithium-ion batteries whose charging performance remains high in frigid regions and seasons. They also determined why it is so effective.
Published Driving on sunshine: Clean, usable liquid fuels made from solar power



Researchers have developed a solar-powered technology that converts carbon dioxide and water into liquid fuels that can be added directly to a car's engine as drop-in fuel.
Published Watch these cells rapidly create protrusions for exploration and movement



In order to move, cells must be able to rapidly change shape. A team of researchers show that cells achieve this by storing extra 'skin' in folds and bumps on their surface. This cell surface excess can be rapidly deployed to cover temporary protrusions and then folded away for next time.
Published New priming method improves battery life, efficiency



Engineers have developed a readily scalable method to optimize a silicon anode priming method that increases lithium-ion battery performance by 22% to 44%.
Published Milk reaction inspires new way to make highly conductive gel films



A research team has developed what they call a 'dip-and-peel' strategy for simple and rapid fabrication of two-dimensional ionogel membranes. By dipping sustainable biomass materials in certain solvents, molecules naturally respond by arranging themselves into functional thin films at the edge of the material that can easily be removed using nothing more than a simple set of tweezers.
Published Robotic proxy brings remote users to life in real time



Researchers have developed a robot, called ReMotion, that occupies physical space on a remote user's behalf, automatically mirroring the user's movements in real time and conveying key body language that is lost in standard virtual environments.
Published Unlocking the power of photosynthesis for clean energy production



Researchers are embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst. By leveraging the unique properties of microorganisms and nanomaterials, the system has the potential to replace current approaches that derive hydrogen from fossil fuels, revolutionizing the way hydrogen fuel is produced and unlocking a powerful source of renewable energy.
Published The influence of AI on trust in human interaction



As AI becomes increasingly realistic, our trust in those with whom we communicate may be compromised. Researchers at the University of Gothenburg have examined how advanced AI systems impact our trust in the individuals we interact with.
Published Exciton fission: One photon in, two electrons out



Photovoltaics, the conversion of light to electricity, is a key technology for sustainable energy. Since the days of Max Planck and Albert Einstein, we know that light as well as electricity are quantized, meaning they come in tiny packets called photons and electrons. In a solar cell, the energy of a single photon is transferred to a single electron of the material, but no more than one. Only a few molecular materials like pentacene are an exception, where one photon is converted to two electrons instead. This excitation doubling, which is called exciton fission, could be extremely useful for high-efficiency photovoltaics, specifically to upgrade the dominant technology based on silicon. Researchers have now deciphered the first step of this process by recording an ultrafast movie of the photon-to-electricity conversion process, resolving a decades-old debate about the mechanism of the process.
Published Scurrying centipedes inspire many-legged robots that can traverse difficult landscapes



Intrigued to see if the many limbs could be helpful for locomotion in this world, a team of physicists, engineers, and mathematicians are using this style of movement to their advantage. They developed a new theory of multilegged locomotion and created many-legged robotic models, discovering the robot with redundant legs could move across uneven surfaces without any additional sensing or control technology as the theory predicted.