Showing 20 articles starting at article 701
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Engineering: Robotics Research
Published Resilient bug-sized robots keep flying even after wing damage


Researchers have developed resilient artificial muscles that can enable insect-scale aerial robots to effectively recover flight performance after suffering severe damage.
Published Minimizing electric vehicles' impact on the grid


Some projections show that widespread adoption of electric vehicles might require costly new power plants to meet peak loads in the evening. A new study shows that placing EV charging stations strategic ways and setting up systems to initiate charging at delayed times could lessen or eliminate the need for new power plants.
Published Researchers control the degree of twist in nanostructured particles


Micron-sized 'bow ties,' self-assembled from nanoparticles, form a variety of different curling shapes that can be precisely controlled, a research team has shown.
Published Propeller advance paves way for quiet, efficient electric aviation


Electrification is seen as having an important role to play in the fossil-free aviation of tomorrow. But electric aviation is battling a trade-off dilemma: the more energy-efficient an electric aircraft is, the noisier it gets. Now, researchers have developed a propeller design optimization method that paves the way for quiet, efficient electric aviation.
Published Mix-and-match kit could enable astronauts to build a menagerie of lunar exploration bots


The Walking Oligomeric Robotic Mobility System, or WORMS, is a reconfigurable, modular, multiagent robotics architecture for extreme lunar terrain mobility. The system could be used to assemble autonomous worm-like parts into larger biomimetic robots that could explore lava tubes, steep slopes, and the moon's permanently shadowed regions.
Published Robots can help improve mental wellbeing at work -- as long as they look right


Robots can be useful as mental wellbeing coaches in the workplace -- but perception of their effectiveness depends in large part on what the robot looks like.
Published Game-changing high-performance semiconductor material could help slash heat emissions


Researchers have engineered a material with the potential to dramatically cut the amount of heat power plants release into the atmosphere.
Published Researchers develop soft robot that shifts from land to sea with ease


Most animals can quickly transition from walking to jumping to crawling to swimming if needed without reconfiguring or making major adjustments. Most robots cannot. But researchers have now created soft robots that can seamlessly shift from walking to swimming, for example, or crawling to rolling using a bistable actuator made of 3D-printed soft rubber containing shape-memory alloy springs that react to electrical currents by contracting, which causes the actuator to bend. The team used this bistable motion to change the actuator or robot's shape. Once the robot changes shape, it is stable until another electrical charge morphs it back to its previous configuration.
Published Are piezoelectrics good for generating electricity? Perhaps, but we must decide how to evaluate them


A 'best practice' protocol for researchers developing piezoelectric materials has been developed by scientists. The protocol was developed by an international team led by physicists in response to findings that experimental reports lack consistency. The researchers made the shocking discovery that nine out of 10 scientific papers miss experimental information that is crucial to ensure the reproducibility of the reported work.
Published 3D internal structure of rechargeable batteries revealed


Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.
Published Experiment unlocks bizarre properties of strange metals


Physicists are learning more about the bizarre behavior of 'strange metals,' which operate outside the normal rules of electricity.
Published Electrocatalysis under the atomic force microscope


A further development in atomic force microscopy now makes it possible to simultaneously image the height profile of nanometer-fine structures as well as the electric current and the frictional force at solid-liquid interfaces. A team has succeeded in analyzing electrocatalytically active materials and gaining insights that will help optimize catalysts. The method is also potentially suitable for studying processes on battery electrodes, in photocatalysis or on active biomaterials.
Published Ultra-soft and highly stretchable hydrogel-based sensor for monitoring overactive bladder


Researchers have developed an ultra-soft and highly stretchable tissue-adhesive hydrogel-based multifunctional implantable sensor for monitoring of overactive bladder.
Published New kind of transistor could shrink communications devices on smartphones


One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team has now demonstrated a reconfigurable transistor using that material. Their work paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities.
Published New 'camera' with shutter speed of 1 trillionth of a second sees through dynamic disorder of atoms


Researchers have developed a new 'camera' that sees the local disorder in materials. Its key feature is a variable shutter speed: because the disordered atomic clusters are moving, when the team used a slow shutter, the dynamic disorder blurred out, but when they used a fast shutter, they could see it. The method uses neutrons to measure atomic positions with a shutter speed of around one picosecond, a trillion times faster than normal camera shutters.
Published Electric vehicle batteries could get big boost with new polymer coating


Scientists have developed a polymer coating that could enable longer lasting, more powerful lithium-ion batteries for electric vehicles. The advance opens up a new approach to developing EV batteries that are more affordable and easy to manufacture.
Published Controlling electric double layer dynamics for next generation all-solid-state batteries


Development of all-solid-state batteries is crucial to achieve carbon neutrality. However, their high surface resistance causes these batteries to have low output, limiting their applications. To this end, researchers have employed a novel technique to investigate and modulate electric double layer dynamics at the solid/solid electrolyte interface. The researchers demonstrate unprecedented control of response speed by over two orders of magnitude, a major steppingstone towards realization of commercial all-solid-state batteries.
Published Fighting friction to protect machinery


Moving parts in mechanical come into regular contact, leading to wear and tear. Now, researchers have developed a contact control system, driven by artificial intelligence, to greatly reduce contact between damaged parts.
Published Extreme fast charging capability in lithium-ion batteries


Lithium-ion batteries dominate among energy storage devices and are the battery of choice for the electric vehicle industry. Improving battery performance is a constant impetus to current research in this field. Towards this end, a group of researchers has synthesized a lithium borate-type aqueous polyelectrolyte binder for graphite anodes. Their new binder helped improve Li-ion diffusion and lower impedance compared to conventional batteries.
Published Robot provides unprecedented views below Antarctic ice shelf


With the help of an underwater robot, known as Icefin, a U.S.- New Zealand research team has obtained an unprecedented look inside a crevasse at Kamb Ice Stream -- revealing more than a century of geological processes beneath the Antarctic ice.