Showing 20 articles starting at article 1041
< Previous 20 articles Next 20 articles >
Categories: Engineering: Robotics Research, Geoscience: Earth Science
Published Next decade decisive for PV growth on the path to 2050



Global experts on solar power strongly urge a commitment to the continued growth of photovoltaic (PV) manufacturing and deployment to power the planet, arguing that lowballing projections for PV growth while waiting for a consensus on other energy pathways or the emergence of technological last-minute miracles 'is no longer an option.'
Published The diversity of present tree species is shaped by climate change in the last 21,000 years



A new global survey of 1000 forest areas shows how climate change since the peak of the last ice age has had a major impact on the diversity and distribution of tree species we see today. The results can help us predict how ecosystems will react to future changes, thus having an impact on conservation management around the globe.
Published Nullarbor rocks reveal Australia's transformation from lush to dust



Researchers have discovered how long ago the Australian Nullarbor plain dried out, with a new approach shedding light on how ancient climate change altered some of the driest regions of our planet.
Published Counting the cost of sunshine: Finding a better metric to measure human ecological footprints



The human food-energy-water system is wickedly interconnected, but most of the links in the network are neither global nor local -- the action lies in everyday trade between counties and states that rely on each other's ecosystems. To capture a better picture of human impacts in this system, you need a measurement that starts at the source -- the sun.
Published Scientists discover pristine deep-sea coral reefs in the Galápagos Marine Reserve



Scientists have discovered extensive, ancient deep-sea coral reefs within the Galápagos Marine Reserve (GMR) -- the first of their kind ever to be documented inside the marine protected area (MPA) since it was established in 1998. The first reef observed was found at 400-600m (1,310-1,970 feet) depth at the summit of a previously unmapped seamount in the central part of the archipelago and supports a breathtaking mix of deep marine life.
Published Team designs four-legged robotic system that can walk a balance beam



Researchers have designed a system that makes an off-the-shelf quadruped robot nimble enough to walk a narrow balance beam -- a feat that is likely the first of its kind.
Published Coastal species persist on high seas on floating plastic debris



The high seas have been colonized by a surprising number of coastal marine invertebrate species, which can now survive and reproduce in the open ocean, contributing strongly to the floating community composition. Researchers found coastal species, representing diverse taxonomic groups and life history traits, in the eastern North Pacific Subtropical Gyre on over 70 percent of the plastic debris they examined. Further, the debris carried more coastal species than open ocean species.
Published A neuromorphic visual sensor can recognize moving objects and predict their path



The new smart sensor uses embedded information to detect motion in a single video frame.
Published A novel platinum nanocluster for improved oxygen reduction reaction in fuel cells



Hydrogen, derived from polymer electrolyte fuel cells (PEFCs), is an excellent source of clean energy. However, PEFCs require platinum (Pt), which is a limited resource. Some studies have shown that Pt nanoclusters (NCs) have higher activity than conventionally used Pt nanoparticles, however the origin of their higher activity is unclear. Now, researchers have synthesized a novel Pt NC catalyst with unprecedented activity and identified the reason for its high performance.
Published New approach estimates long-term coastal cliff loss



A new method for estimating cliff loss over thousands of years in Del Mar, California, may help reveal some of the long-term drivers of coastal cliff loss in the state.
Published How can a pollinating insect be recognized in the fossil record?



Insect pollination is a decisive process for the survival and evolution of angiosperm (flowering) plants and, to a lesser extent, gymnosperms (without visible flower or fruit). There is a growing interest in studies on the origins of the relationship between insects and plants, especially in the current context of the progressive decline of pollinating insects on a global scale and its impact on food production. Pollinating insects can be recognized in the fossil record, although to date, there has been no protocol for their differentiation. Fossil pollinators have been found in both rock and amber deposits, and it is in rock deposits that the first evidence of plant pollination by insects is being studied across the globe. But how can we determine which was a true insect pollinator in the past?
Published Recovering rare earth elements in environmental water



A research group has succeeded in selectively recovering trace rare earth elements in synthetic seawater and environmental water, such as hot spring water, using baker's yeast with a phosphate group added. The phosphorylated yeast is expected to be utilized as a material for recovering useful metals and removing toxic metals, thereby contributing to the realization of a metal resource-circulating society.
Published Multi-compartment membranes for multicellular robots: Everybody needs some body



We typically think of robots as metal objects, filled with motors and circuits. But the field of molecular robotics is starting to change that. Like the formation of complex living organisms, molecular robots derive their form and functionality from assembled molecules stored in a single unit, i.e., a body. Yet manufacturing this body at the microscopic level is an engineering nightmare. Now, a team has created a simple workaround.
Published 2022 Tongan volcanic explosion was largest natural explosion in over a century, new study finds



The 2022 eruption of a submarine volcano in Tonga was more powerful than the largest U.S. nuclear explosion, according to a new study. The 15-megaton volcanic explosion from Hunga Tonga-Hunga Ha'apai, one of the largest natural explosions in more than a century, generated a mega-tsunami with waves up to 45-meters high (148 feet) along the coast of Tonga's Tofua Island and waves up to 17 meters (56 feet) on Tongatapu, the country's most populated island.
Published How did the Andes Mountains get so huge? A new geological research method may hold the answer



How did the Andes -- the world's longest mountain range -- reach its enormous size? This is just one of the geological questions that a new method may be able to answer. With unprecedented precision, the method allows researchers to estimate how Earth's tectonic plates changed speed over the past millions of years.
Published Scientists create high-efficiency sustainable solar cells for IoT devices with AI-powered energy management



Researchers have created environmentally-friendly, high-efficiency photovoltaic cells that harness ambient light to power internet of Things (IoT) devices.
Published Predictive power of climate models may be masked by volcanoes



Simulated volcanic eruptions may be blowing up our ability to predict near-term climate, according to a new study.
Published The hidden culprit behind nitrogen dioxide emissions



A research team assesses neighborhood-scale NO2 exposure using a European satellite. High-rise apartment complexes are a significant source of emissions that should be considered in the development of clean air policies.
Published Research in Japan shows the way toward tactile and proximity sensing in large soft robots



To make human-robot interactions safer and more fruitful, robots should be capable of sensing their environment. In a recent study, researchers developed a novel robotic link with tactile and proximity sensing capabilities. Additionally, they created a simulation and learning framework that can be employed to train the robotic link to sense its environment. Their findings will pave the way to a future where humans and robots can operate harmoniously in close proximity.
Published Toward a safer 'artificial muscle' material



Whether wriggling your toes or lifting groceries, muscles in your body smoothly expand and contract. Some polymers can do the same thing -- acting like artificial muscles -- but only when stimulated by dangerously high voltages. Now, researchers report a series of thin, elastic films that respond to substantially lower electrical charges. The materials represent a step toward artificial muscles that could someday operate safely in medical devices.