Showing 20 articles starting at article 661
< Previous 20 articles Next 20 articles >
Categories: Engineering: Robotics Research, Space: Exploration
Published AI nursing ethics: Viability of robots and artificial intelligence in nursing practice


Robots and artificial intelligence (AI) are expected to play a key role in nursing practice in the future. In this regard, researchers from Japan ask whether intelligent machines can replace humans as nurses. They investigate the potential of current advancements in robotics and AI to replicate the ethical concepts attributed to nurses, including advocacy, accountability, cooperation, and caring. While these technologies hold promise in enhancing healthcare practices, their integration into nursing requires careful consideration.
Published Bees make decisions better and faster than we do, for the things that matter to them


Research reveals how millions of years of evolution has engineered honey bees to make fast decisions and reduce risk.
Published Chemists create the microspine with shape-transforming properties for targeted cargo delivery at microscale


With the goal of advancing biomimetic microscale materials, the research team has developed a new method to create microscale superstructures, called MicroSpine, that possess both soft and hard materials which mimic the spine structure and can act as microactuators with shape-transforming properties. This breakthrough was achieved through colloidal assembly, a simple process in which nano- and microparticles spontaneously organize into ordered spatial patterns.
Published Webb Telescope detects most distant active supermassive black hole



Researchers have discovered the most distant active supermassive black hole to date with the James Webb Space Telescope (JWST). The galaxy, CEERS 1019, existed about 570 million years after the big bang, and its black hole is less massive than any other yet identified in the early universe.
Published Webb locates dust reservoirs in two supernovae



Researchers have made major strides in confirming the source of dust in early galaxies. Observations of two Type II supernovae, Supernova 2004et (SN 2004et) and Supernova 2017eaw (SN 2017eaw), have revealed large amounts of dust within the ejecta of each of these objects. The mass found by researchers supports the theory that supernovae played a key role in supplying dust to the early universe.
Published Large sub-surface granite formation signals ancient volcanic activity on Moon's dark side



A large formation of granite discovered below the lunar surface likely was formed from the cooling of molten lava that fed a volcano or volcanoes that erupted early in the Moon's history -- as long as 3.5 billion years ago.
Published Deciphering the thermodynamic arrow of time in large-scale complex networks


A solution for temporal asymmetry -- or entropy production -- in thermodynamics has been developed to further our understanding of the behavior of biological systems, machine learning, and AI tools. The researchers worked on the time-irreversible Ising model dynamics caused by asymmetric connections between neurons.
Published 'Workplace AI revolution isn't happening yet,' survey shows


The UK risks a growing divide between organizations who have invested in new, artificial intelligence-enabled digital technologies and those who haven’t, new research suggests.
Published New image from James Webb Space Telescope reveals astonishing Saturn and its rings



Saturn's iconic rings seem to glow eerily in this incredible infrared picture, which also unveils unexpected features in Saturn's atmosphere. This image serves as context for an observing program that will test the telescope's capacity to detect faint moons around the planet and its bright rings. Any newly discovered moons could help scientists put together a more complete picture of the current system of Saturn, as well as its past.
Published Displays controlled by flexible fins and liquid droplets more versatile, efficient than LED screens


Flexible displays that can change color, convey information and even send veiled messages via infrared radiation are now possible, thanks to new research. Engineers inspired by the morphing skins of animals like chameleons and octopuses have developed capillary-controlled robotic flapping fins to create switchable optical and infrared light multipixel displays that are 1,000 times more energy efficient than light-emitting devices.
Published Robotic glove that 'feels' lends a 'hand' to relearn playing piano after a stroke



A new soft robotic glove is lending a 'hand' and providing hope to piano players who have suffered a disabling stroke or other neurotrauma. Combining flexible tactile sensors, soft actuators and AI, this robotic glove is the first to 'feel' the difference between correct and incorrect versions of the same song and to combine these features into a single hand exoskeleton. Unlike prior exoskeletons, this new technology provides precise force and guidance in recovering the fine finger movements required for piano playing and other complex tasks.
Published Gullies on Mars could have been formed by recent periods of liquid meltwater, study suggests



A study offers new insights into how water from melting ice could have played a recent role in the formation of ravine-like channels that cut down the sides of impact craters on Mars.
Published New single-photon Raman lidar can monitor for underwater oil leaks



Researchers report a new single-photon Raman lidar system that operates underwater and can remotely distinguish various substances. They also show that the new system can detect the thickness of the oil underwater up to 12 m away, which could be useful for detecting oil spills.
Published Gravitational waves from colossal black holes found using 'cosmic clocks'



You can't see or feel it, but everything around you -- including your own body -- is slowly shrinking and expanding. It's the weird, spacetime-warping effect of gravitational waves passing through our galaxy. New results are the first evidence of the gravitational wave background -- a sort of soup of spacetime distortions pervading the entire universe and long predicted to exist by scientists.
Published Life after death: Astronomers find a planet that shouldn't exist



The star would have inflated up to 1.5 times the planet's orbital distance -- engulfing the planet in the process -- before shrinking to its current size at only one-tenth of that distance.
Published Starlight and the first black holes: researchers detect the host galaxies of quasars in the early universe



For the first time, the James Webb Space Telescope has revealed starlight from two massive galaxies hosting actively growing black holes -- quasars -- seen less than a billion years after the Big Bang.
Published Emulating how krill swim to build a robotic platform for ocean navigation



Researchers have presented important first steps in building underwater navigation robots.
Published First detection of crucial carbon molecule



Scientists detect a new carbon compound in space for the first time. Known as methyl cation (pronounced cat-eye-on) (CH3+), the molecule is important because it aids the formation of more complex carbon-based molecules. Methyl cation was detected in a young star system, with a protoplanetary disk, known as d203-506, which is located about 1,350 light-years away in the Orion Nebula.
Published Stronger tape engineered through the art of cutting



What if you could make adhesives both strong and easily removable? This seemingly paradoxical combination of properties could dramatically change applications in robotic grasping, wearables for health monitoring, and manufacturing for assembly and recycling. A team has adapted kirigami, the ancient Japanese art of cutting paper, into a method for increasing the adhesive bond of ordinary tape by 60 times. Developing such adhesives may not by that far off through the latest research conducted by the team of Michael Bartlett, assistant professor in the Department of Mechanical Engineering at Virginia Tech, and published in Nature Materials on June 22.
Published Einstein and Euler put to the test at the edge of the Universe



The cosmos is a unique laboratory for testing the laws of physics, in particular those of Euler and Einstein. Euler described the movements of celestial objects, while Einstein described the way in which celestial objects distort the Universe. Since the discovery of dark matter and the acceleration of the Universe's expansion, the validity of their equations has been put to the test: are they capable of explaining these mysterious phenomena? A team has developed the first method to find out. It considers a never-before-used measure: time distortion.