Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Engineering: Robotics Research, Geoscience: Geology
Published New model refutes leading theory on how Earth's continents formed



Computational modeling shows that plate tectonics weren't necessary for early continents.
Published How the rising earth in Antarctica will impact future sea level rise



The rising earth beneath the Antarctic Ice Sheet will likely become a major factor in future sea level rise, a new study suggests.
Published Link between global warming and rising sea levels



A new study suggests that Earth's natural forces could substantially reduce Antarctica's impact on rising sea levels, but only if carbon emissions are swiftly reduced in the coming decades. By the same token, if emissions continue on the current trajectory, Antarctic ice loss could lead to more future sea level rise than previously thought.
Published Towards smart cities: Predicting soil liquefaction risk using artificial intelligence



Soil liquefaction that results in infrastructure damage has long been a point of contention for urban planners and engineers. Accurately predicting the soil liquefaction risk of a region could help overcome this challenge. Accordingly, researchers applied artificial intelligence to generate soil liquefaction risk maps, superseding already published risk maps.
Published Recent volcanic 'fires' in Iceland triggered by storage and melting in crust



Scientists have detected geochemical signatures of magma pooling and melting beneath the subsurface during the 'Fagradalsfjall Fires', that began on Iceland's Reykjanes peninsula in 2021. Samples show that the start of the eruption began with massive pooling of magma, contrasting initial hypothesis for magma ascent straight from the mantle.
Published A blue miracle: How sapphires formed in volcanoes



Sapphires are among the most precious gems, yet they consist solely of chemically 'contaminated' aluminum oxide, or corundum. It is widely assumed that these crystals with their characteristically blue color come from deep crustal rocks and accidentally ended up on the Earth's surface as magma ascended. Geoscientists have now been able to show that the sapphire grains found in the Eifel (Germany) formed in association with volcanism.
Published Shape-shifting 'transformer bots' inspired by origami



Inspired by the paper-folding art of origami, engineers have discovered a way to make a single plastic cubed structure transform into more than 1,000 configurations using only three active motors.
Published Robotics: Self-powered 'bugs' can skim across water to detect environmental data



Researchers have developed a self-powered 'bug' that can skim across the water, and they hope it will revolutionize aquatic robotics.
Published New understanding of fly behavior has potential application in robotics, public safety



Scientists have identified an automatic behavior in flies that helps them assess wind conditions -- its presence and direction -- before deploying a strategy to follow a scent to its source. The fact that they can do this is surprising -- can you tell if there's a gentle breeze if you stick your head out of a moving car? Flies aren't just reacting to an odor with a preprogrammed response: they are responding in context-appropriate manner. This knowledge potentially could be applied to train more sophisticated algorithms for scent-detecting drones to find the source of chemical leaks.
Published Next-gen cooling system to help data centers become more energy efficient



Artificial intelligence (AI) is hot right now. Also hot: the data centers that power the technology. And keeping those centers cool requires a tremendous amount of energy. The problem is only going to grow as high-powered AI-based computers and devices become commonplace. That's why researchers are devising a new type of cooling system that promises to dramatically reduce energy demands.
Published It's got praying mantis eyes



The praying mantis is one of the few insects with compound eyes and the ability to perceive 3D space. Engineers are replicating their visual systems to make machines see better.
Published Foam fluidics showcase lab's creative approach to circuit design



Engineers have shown that something as simple as the flow of air through open-cell foam can be used to perform digital computation, analog sensing and combined digital-analog control in soft textile-based wearable systems.
Published New study supports stable mantle chemistry dating back to Earth's early geologic history and over its prodigious evolution



A new analysis of rocks thought to be at least 2.5 billion years old helps clarify the chemical history of Earth's mantle -- the geologic layer beneath the planet's crust. The findings hone scientists' understanding of Earth's earliest geologic processes, and they provide new evidence in a decades-long scientific debate about the geologic history of Earth. Specifically, the results provide evidence that the oxidation state of the vast majority of Earth's mantle has remained stable through geologic time and has not undergone major transitions, contrary to what has been suggested previously by other researchers.
Published Hot traces in rock



Fluids circulating underground change rocks over the course of time. These processes must be taken into account if they are to be used as a climate archive. Researchers have used 380-million-year-old limestones from Hagen-Hohenlimburg to show in detail which climate information is still preserved in the rock.
Published How pollution may remain in water after oil spill cleanups



The way oil drops break up at the water's surface means some oil may not get cleaned up after a spill.
Published Ant insights lead to robot navigation breakthrough



Have you ever wondered how insects are able to go so far beyond their home and still find their way? The answer to this question is not only relevant to biology but also to making the AI for tiny, autonomous robots. Drone-researchers felt inspired by biological findings on how ants visually recognize their environment and combine it with counting their steps in order to get safely back home. They have used these insights to create an insect-inspired autonomous navigation strategy for tiny, lightweight robots. It allows such robots to come back home after long trajectories, while requiring extremely little computation and memory (0.65 kiloByte per 100 m). In the future, tiny autonomous robots could find a wide range of uses, from monitoring stock in warehouses to finding gas leaks in industrial sites.
Published Scientists discover missing piece in climate models



As the planet continues to warm due to human-driven climate change, accurate computer climate models will be key in helping illuminate exactly how the climate will continue to be altered in the years ahead.
Published A chemical claw machine bends and stretches when exposed to vapors



Scientists have developed a tiny 'claw machine' that is able to pick up and drop a marble-sized ball in response to exposure to chemical vapors. The findings point to a technique that can enable soft actuators--the parts of a machine that make it move--to perform multiple tasks without the need for additional costly materials. While existing soft actuators can be 'one-trick ponies' restricted to one type of movement, this novel composite film contorts itself in different ways depending on the vapor that it is exposed to.
Published Learning dance moves could help humanoid robots work better with humans



Engineers have trained a humanoid robot to perform a variety of expressive movements, from simple dance routines to gestures like waving, high-fiving and hugging, all while maintaining a steady gait on diverse terrains. This work marks a step towards building robots that perform more complex and human-like motions.
Published A new twist on artificial 'muscles' for safer, softer robots



Engineers have developed a new soft, flexible device that makes robots move by expanding and contracting -- just like a human muscle. To demonstrate their new device, called an actuator, the researchers used it to create a cylindrical, worm-like soft robot and an artificial bicep. In experiments, the cylindrical soft robot navigated the tight, hairpin curves of a narrow pipe-like environment, and the bicep was able to lift a 500-gram weight 5,000 times in a row without failing.