Anthropology: Cultures Anthropology: Early Humans Anthropology: General Archaeology: General Environmental: General
Published

Thailand's Iron Age Log Coffin culture      (via sciencedaily.com)     Original source 

A mortuary practice known as Log Coffin culture characterizes the Iron Age of highland Pang Mapha in northwestern Thailand. Between 2,300 and 1,000 years ago, individuals were buried in large wooden coffins on stilts, mostly found in caves and rock shelters.

Chemistry: General Engineering: Robotics Research
Published

GPT-3 transforms chemical research      (via sciencedaily.com)     Original source 

Scientists demonstrate how GPT-3 can transform chemical analysis, making it faster and more user-friendly.

Computer Science: Virtual Reality (VR) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

One person can supervise 'swarm' of 100 unmanned autonomous vehicles      (via sciencedaily.com)     Original source 

Research involving has shown that a 'swarm' of more than 100 autonomous ground and aerial robots can be supervised by one person without subjecting the individual to an undue workload.

Engineering: Robotics Research
Published

Engineers unveil new patch that can help people control robotic exoskeletons      (via sciencedaily.com)     Original source 

A new patch uses tiny needles to measure electrical signals in the human body with incredible accuracy, even when these devices are stretched or twisted.

Anthropology: Cultures Anthropology: Early Humans Anthropology: General Archaeology: General
Published

Neanderthals and humans lived side by side in Northern Europe 45,000 years ago      (via sciencedaily.com)     Original source 

Archaeologists have debated whether Neanderthals or modern humans made stone tools that are found at sites across northern Europe and date from about 40,000 years ago. A new excavation at one site in Germany turned up 45,000-year-old bone fragments that, when analyzed for mitochondrial DNA, proved to be from Homo sapiens. This is the earliest evidence that modern humans overlapped with Neanderthals in northwest Europe, thousands of years before Neanderthals went extinct.

Energy: Technology Engineering: Robotics Research
Published

Artificial muscles -- lighter, safer, more robust      (via sciencedaily.com)     Original source 

Researchers have developed artificial muscles that are lighter, safer and more robust than their predecessors. The newly developed actuators have a novel type of shell structure and use a high-permittivity ferroelectric material that can store relatively large amounts of electrical energy. They therefore work with relatively low electrical voltage, are waterproof, more robust and safer to touch.

Engineering: Robotics Research
Published

Sweat-resistant wearable robot sensor      (via sciencedaily.com)     Original source 

A joint research team has developed a stretchable and adhesive microneedle sensor that can be attached to the skin and stably measure high-quality electrophysiological signals for a long period of time.

Engineering: Robotics Research Physics: Optics
Published

Researchers propose AI-guided system for robotic inspection of buildings, roads and bridges      (via sciencedaily.com)     Original source 

Our built environment is aging and failing faster than we can maintain it. Recent building collapses and structural failures of roads and bridges are indicators of a problem that's likely to get worse, according to experts, because it's just not possible to inspect every crack, creak and crumble to parse dangerous signs of failure from normal wear and tear. In hopes of playing catch-up, researchers are trying to give robotic assistants the tools to help inspectors with the job.

Anthropology: Early Humans Anthropology: General Archaeology: General Biology: Evolutionary Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

How did humans learn to walk? New evolutionary study offers an earful      (via sciencedaily.com)     Original source 

A new study, which centers on evidence from skulls of a 6-million-year-old fossil ape, Lufengpithecus, offers important clues about the origins of bipedal locomotion courtesy of a novel method: analyzing its bony inner ear region using three-dimensional CT-scanning. The inner ear appears to provide a unique record of the evolutionary history of ape locomotion.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Robot trained to read braille at twice the speed of humans      (via sciencedaily.com)     Original source 

Researchers have developed a robotic sensor that incorporates artificial intelligence techniques to read braille at speeds roughly double that of most human readers.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Physics: General
Published

Utilizing active microparticles for artificial intelligence      (via sciencedaily.com)     Original source 

Artificial intelligence using neural networks performs calculations digitally with the help of microelectronic chips. Physicists have now created a type of neural network that works not with electricity but with so-called active colloidal particles.The researchers describe how these microparticles can be used as a physical system for artificial intelligence and the prediction of time series.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Scientists design a two-legged robot powered by muscle tissue      (via sciencedaily.com)     Original source 

Compared to robots, human bodies are flexible, capable of fine movements, and can convert energy efficiently into movement. Drawing inspiration from human gait, researchers from Japan crafted a two-legged biohybrid robot by combining muscle tissues and artificial materials. This method allows the robot to walk and pivot.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Autonomous synthesis robot uses AI to speed up chemical discovery      (via sciencedaily.com)     Original source 

Chemists have developed an autonomous chemical synthesis robot with an integrated AI-driven machine learning unit. Dubbed 'RoboChem', the benchtop device can outperform a human chemist in terms of speed and accuracy while also displaying a high level of ingenuity. As the first of its kind, it could significantly accelerate chemical discovery of molecules for pharmaceutical and many other applications.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Energy: Technology Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Mini-robots modeled on insects may be smallest, lightest, fastest ever developed      (via sciencedaily.com)     Original source 

Two insect-like robots, a mini-bug and a water strider may be the smallest, lightest and fastest fully functional micro-robots ever known to be created. Such miniature robots could someday be used for work in areas such as artificial pollination, search and rescue, environmental monitoring, micro-fabrication or robotic-assisted surgery. Reporting on their work in the proceedings of the IEEE Robotics and Automation Society's International Conference on Intelligent Robots and Systems, the mini-bug weighs in at eight milligrams while the water strider weighs 55 milligrams. Both can move at about six millimeters a second.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Virtual Reality (VR) Engineering: Robotics Research
Published

'Smart glove' can boost hand mobility of stroke patients      (via sciencedaily.com)     Original source 

This month, a group of stroke survivors in British Columbia will test a new technology designed to aid their recovery, and ultimately restore use of their limbs and hands. Participants will wear a new groundbreaking 'smart glove' capable of tracking their hand and finger movements during rehabilitation exercises.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Robotics Research Offbeat: General
Published

Squishy, metal-free magnets to power robots and guide medical implants      (via sciencedaily.com)     Original source 

'Soft robots,' medical devices and implants, and next-generation drug delivery methods could soon be guided with magnetism -- thanks to a metal-free magnetic gel developed by researchers. Carbon-based, magnetic molecules are chemically bonded to the molecular network of a gel, creating a flexible, long-lived magnet for soft robotics.

Chemistry: Inorganic Chemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Artificial muscle device produces force 34 times its weight      (via sciencedaily.com)     Original source 

Scientists developed a soft fluidic switch using an ionic polymer artificial muscle that runs with ultra-low power to lift objects 34 times greater than its weight. Its light weight and small size make it applicable to various industrial fields such as soft electronics, smart textiles, and biomedical devices by controlling fluid flow with high precision, even in narrow spaces.

Computer Science: Virtual Reality (VR) Engineering: Robotics Research
Published

Artificial intelligence helps unlock advances in wireless communications      (via sciencedaily.com)     Original source 

A new wave of communication technology is quickly approaching and researchers are now investigating ways to configure next-generation mobile networks.

Biology: Biochemistry Biology: General Biology: Zoology Chemistry: Biochemistry Engineering: Robotics Research
Published

A beating biorobotic heart aims to better simulate valves      (via sciencedaily.com)     Original source 

Combining a biological heart and a silicone robotic pump, researchers created a biorobotic heart that beats like a real one, with a focus on a valve on the left side of the heart. The heart valve simulator can mimic the structure, function, and motion of a healthy or diseased heart, allowing surgeons and researchers to demonstrate various interventions while collecting real-time data.