Showing 20 articles starting at article 541

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: General, Engineering: Robotics Research

Return to the site home page

Chemistry: General Energy: Batteries Energy: Fossil Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Major climate benefits with electric aircraft      (via sciencedaily.com)     Original source 

Researchers have performed the world's first life cycle assessment (LCA) of an existing, two-seater, all-electric aircraft, with a direct comparison to an equivalent fossil fuel-powered one. According to the study, after just one quarter of the expected lifespan of the electric aircraft, the climate impact is lower than that of the fossil fuel-based aircraft, provided that green electricity is used. The downside, however, is increased mineral resource scarcity.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels
Published

New sustainable method for creating organic semiconductors      (via sciencedaily.com)     Original source 

Researchers have developed a new, more environmentally friendly way to create conductive inks for use in organic electronics such as solar cells, artificial neurons, and soft sensors. The findings pave the way for future sustainable technology.

Chemistry: General Chemistry: Inorganic Chemistry
Published

New reagent improves the process of making sulfur-containing compounds that may be used in medicines      (via sciencedaily.com)     Original source 

Researchers describe their development of a new reagent that allows a more efficient approach to make sulfoximines, sulfonimidoyl fluorides and sulfonimidamides that may be used in medicines.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Scientists advance affordable, sustainable solution for flat-panel displays and wearable tech      (via sciencedaily.com)     Original source 

Scientists have developed 'supramolecular ink,' a new 3D-printable OLED (organic light-emitting diode) material made of inexpensive, Earth-abundant elements instead of costly scarce metals. The advance could enable more affordable and environmentally sustainable OLED flat-panel displays as well as 3D-printable wearable technologies and lighting.

Chemistry: Biochemistry Chemistry: General Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Deepwater Horizon oil spill study could lead to overhaul of cleanup processes worldwide      (via sciencedaily.com)     Original source 

New research could lead to major improvements in marine oil spill cleanup processes. The innovative study assessed the impact of the Deepwater Horizon oil spill on microscopic seawater bacteria that perform a significant role in ecosystem functioning.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Offbeat: General
Published

DNA becomes our 'hands' to construct advanced nanoparticle materials      (via sciencedaily.com)     Original source 

A new paper describes a significant leap forward in assembling polyhedral nanoparticles. The researchers introduce and demonstrate the power of a novel synthetic strategy that expands possibilities in metamaterial design. These are the unusual materials that underpin 'invisibility cloaks' and ultrahigh-speed optical computing systems.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Energy: Technology Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Mini-robots modeled on insects may be smallest, lightest, fastest ever developed      (via sciencedaily.com)     Original source 

Two insect-like robots, a mini-bug and a water strider may be the smallest, lightest and fastest fully functional micro-robots ever known to be created. Such miniature robots could someday be used for work in areas such as artificial pollination, search and rescue, environmental monitoring, micro-fabrication or robotic-assisted surgery. Reporting on their work in the proceedings of the IEEE Robotics and Automation Society's International Conference on Intelligent Robots and Systems, the mini-bug weighs in at eight milligrams while the water strider weighs 55 milligrams. Both can move at about six millimeters a second.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemical synthesis: New strategy for skeletal editing on pyridines      (via sciencedaily.com)     Original source 

A team has introduced a strategy for converting carbon-nitrogen atom pairs in a frequently used ring-shaped compound into carbon-carbon atom pairs. The method has potential in the quest for active ingredients for new drugs, for example.

Chemistry: General Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Lighting the path: Exploring exciton binding energies in organic semiconductors      (via sciencedaily.com)     Original source 

Organic semiconductors are materials that find applications in various electronic devices. Exciton binding energy is an important attribute that influences the behavior of these materials. Now, researchers have employed advanced spectroscopic techniques to accurately determine these energies for various organic semiconductor materials, with a high precision of 0.1 electron volts. Their study reveals unexpected correlations that are poised to shape the future of organic optoelectronics, influence design principles, and find potential applications in bio-related materials.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Batteries Energy: Technology Environmental: General Geoscience: Earth Science Geoscience: Geochemistry
Published

Next-generation batteries could go organic, cobalt-free for long-lasting power      (via sciencedaily.com)     Original source 

In the switch to 'greener' energy sources, the demand for rechargeable lithium-ion batteries is surging. However, their cathodes typically contain cobalt -- a metal whose extraction has high environmental and societal costs. Now, researchers in report evaluating an earth-abundant, carbon-based cathode material that could replace cobalt and other scarce and toxic metals without sacrificing lithium-ion battery performance.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Efficiently moving urea out of polluted water is coming to reality      (via sciencedaily.com)     Original source 

Researchers have developed a material to remove urea from water and potentially convert it into hydrogen gas. By building these materials of nickel and cobalt atoms with carefully tailored electronic structures, the group has unlocked the potential to enable these transition metal oxides and hydroxides to selectively oxidize urea in an electrochemical reaction. The team's findings could help use urea in waste streams to efficiently produce hydrogen fuel through the electrolysis process, and could be used to sequester urea from water, maintaining the long-term sustainability of ecological systems, and revolutionizing the water-energy nexus.

Chemistry: General Chemistry: Organic Chemistry Energy: Batteries Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Cobalt-free batteries could power cars of the future      (via sciencedaily.com)     Original source 

A new battery material could offer a more sustainable way to power electric cars. The lithium-ion battery includes a cathode based on organic materials, instead of cobalt or nickel.

Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Chemists create a 2D heavy fermion      (via sciencedaily.com)     Original source 

Researchers have synthesized the first 2D heavy fermion. The material, a layered intermetallic crystal composed of cerium, silicon, and iodine (CeSiI), has electrons that are 1000x heavier and is a new platform to explore quantum phenomena.

Biology: Botany Chemistry: General Ecology: Endangered Species Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Artificial 'power plants' harness energy from wind and rain      (via sciencedaily.com)     Original source 

Fake plants are moving into the 21st century! Researchers developed literal 'power plants' -- tiny, leaf-shaped generators that create electricity from a blowing breeze or falling raindrops. The team tested the energy harvesters by incorporating them into artificial plants.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Technology
Published

Study reveals a reaction at the heart of many renewable energy technologies      (via sciencedaily.com)     Original source 

Chemists have mapped how proton-coupled electron transfers happen at the surface of an electrode. Their results could help researchers design more efficient fuel cells, batteries, or other energy technologies.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Virtual Reality (VR) Engineering: Robotics Research
Published

'Smart glove' can boost hand mobility of stroke patients      (via sciencedaily.com)     Original source 

This month, a group of stroke survivors in British Columbia will test a new technology designed to aid their recovery, and ultimately restore use of their limbs and hands. Participants will wear a new groundbreaking 'smart glove' capable of tracking their hand and finger movements during rehabilitation exercises.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Robotics Research Offbeat: General
Published

Squishy, metal-free magnets to power robots and guide medical implants      (via sciencedaily.com)     Original source 

'Soft robots,' medical devices and implants, and next-generation drug delivery methods could soon be guided with magnetism -- thanks to a metal-free magnetic gel developed by researchers. Carbon-based, magnetic molecules are chemically bonded to the molecular network of a gel, creating a flexible, long-lived magnet for soft robotics.