Energy: Batteries Energy: Technology Engineering: Nanotechnology Offbeat: Computers and Math
Published

Scientists invent micrometers-thin battery charged by saline solution that could power smart contact lenses      (via sciencedaily.com) 

Scientists have developed a flexible battery as thin as a human cornea, which stores electricity when it is immersed in saline solution, and which could one day power smart contact lenses.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Light regulates structural conversion of chiral molecules      (via sciencedaily.com) 

A team of chemists have developed a novel concept in which a mixture of molecules that behave like mirror images is converted to a single form. To this end, they use light as external energy source. The conversion is relevant e.g. for the preparation of drugs.

Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology
Published

DNA chips as storage media of the future: What challenges need to be overcome      (via sciencedaily.com) 

In the form of DNA, nature shows how data can be stored in a space-saving and long-term manner. Bioinformatics specialists are developing DNA chips for computer technology. Researchers show how a combination of molecular biology, nanotechnology, novel polymers, electronics and automation, coupled with systematic development, could make DNA data storage useful for everyday use possible in a few years.

Chemistry: Organic Chemistry
Published

New approach to nongenetic T-cell-based immunotherapy      (via sciencedaily.com) 

Immunotherapies for cancer aim to induce the immune system to combat cancer cells more effectively. A research team has now described a new, modular strategy for T-cell-based immunotherapy that manages to work without complex genetic modifications. Modulation of cell-cell communications through an ingenious regulatory circuit using various small, specially folded DNA molecules (aptamers) causes cancer cells to directly activate their mortal enemies, T cells.

Chemistry: Organic Chemistry Engineering: Graphene Geoscience: Environmental Issues
Published

Graphene discovery could help generate hydrogen cheaply and sustainably      (via sciencedaily.com) 

Researchers have finally solved the long-standing puzzle of why graphene is so much more permeable to protons than expected by theory.

Engineering: Nanotechnology
Published

Listening to nanoscale earthquakes      (via sciencedaily.com) 

A recent study presents an exciting new way to listen to 'the crackling' noise of atoms shifting at nanoscale when materials are deformed, providing potential improved methods for discontinuities in novel, new materials, such as those proposed for future domain-wall electronics. 'Crackling noise microscopy' presents a new opportunity for generating advanced knowledge about nanoscale features across a wide range of applications and material systems.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: General
Published

Deciphering the molecular dynamics of complex proteins      (via sciencedaily.com) 

Which structures do complex proteins adopt in solution? Biophysicists answer this question using the example of ubiquitin dimers as well as a new combination of high-resolution NMR spectroscopy and sophisticated computer simulations.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Geoscience: Environmental Issues
Published

New approach shows hydrogen can be combined with electricity to make pharmaceutical drugs      (via sciencedaily.com) 

The world needs greener ways to make chemicals. In a new study, researchers demonstrate one potential path toward this goal by adapting hydrogen fuel cell technologies.

Biology: Microbiology Biology: Molecular Chemistry: Organic Chemistry Physics: Optics
Published

Research team developing a nano-sized force sensor and improving high-precision microscopy technology      (via sciencedaily.com) 

Recent research in cell biology highlights groundbreaking results. An international team of researchers have recently established a tool they developed to study the mechanics of the cell. The tool can be used to study the inner forces of the cell, for example, the stretching of the nuclear membrane. The microscopic force sensor, only about 0.00002 mm long, is constructed of exotic ingredients such as spider web protein parts, fluorescent proteins from jellyfish, and antibodies from alpaca. In addition, the multidisciplinary team of researchers has developed further the sensitivity of super-resolution microscopy technique.

Chemistry: Organic Chemistry Energy: Fossil Fuels Energy: Technology Geoscience: Environmental Issues
Published

Groundbreaking green propane production method      (via sciencedaily.com) 

New research reveals a promising breakthrough in green energy: an electrolyzer device capable of converting carbon dioxide into propane in a manner that is both scalable and economically viable.

Engineering: Nanotechnology Physics: General
Published

Stabilizing precipitate growth at grain boundaries in alloys      (via sciencedaily.com) 

Materials are often considered to be one phase, but many engineering materials contain two or more phases, improving their properties and performance. These two-phase materials have inclusions, called precipitates, embedded in the microstructure. Alloys, a combination of two or more types of metals, are used in many applications, like turbines for jet engines and light-weight alloys for automotive applications, because they have very good mechanical properties due to those embedded precipitates. The average precipitate size, however, tends to increase over time-in a process called coarsening-which results in a degradation of performance for microstructures with nanoscale precipitates.

Biology: Molecular Chemistry: Organic Chemistry
Published

Scientists reveal how sensory protein changes shape with nanometer resolution      (via sciencedaily.com) 

The sensory receptor PIEZO1 changes shape in response to mechanical stimuli. The super high-resolution microscopy technology used in this discovery is a breakthrough in enabling protein structures to be studied within the cellular environment.

Engineering: Nanotechnology Geoscience: Environmental Issues Offbeat: Earth and Climate
Published

Cleaning water with 'smart rust' and magnets      (via sciencedaily.com) 

Pouring flecks of rust into water usually makes it dirtier. But researchers have developed special iron oxide nanoparticles called 'smart rust' that actually makes it cleaner. The magnetic nanoparticles attract different pollutants by changing the particles' coating and are removed from water with a magnet. Now, the team is reporting a smart rust that traps estrogen hormones, which are potentially harmful to aquatic life.

Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Decoding how molecules 'talk' to each other to develop new nanotechnologies      (via sciencedaily.com) 

Scientists recreate and compare molecular languages at the origin of life -- opening new doors for the development of novel nanotechnologies.

Chemistry: Organic Chemistry
Published

Researchers develop versatile and low-cost technology for targeted long-read RNA sequencing      (via sciencedaily.com) 

In a development that could accelerate the discovery of new diagnostics and treatments, researchers have developed a versatile and low-cost technology for targeted sequencing of full-length RNA molecules. The technology, called TEQUILA-seq, is highly cost-effective compared to commercially available solutions for targeted RNA sequencing and can be adapted for different research and clinical purposes.

Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Carbon-based quantum technology      (via sciencedaily.com) 

Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Gold buckyballs, oft-used nanoparticle 'seeds' are one and the same      (via sciencedaily.com) 

Chemists have discovered that tiny gold 'seed' particles, a key ingredient in one of the most common nanoparticle recipes, are one and the same as gold buckyballs, 32-atom spheres that are cousins of the Nobel Prize-winning carbon buckyballs discovered in 1985.

Chemistry: Organic Chemistry
Published

Weaker transcription factors are better when they work together      (via sciencedaily.com) 

Bioengineers have developed a generalizable method to address 'off-target' binding, a significant problem in the field of synthetic biology. Taking a cue from nature, the researchers showed they could all but eliminate off-target gene activation by designing weak transcription factors that cooperatively assemble.

Chemistry: Organic Chemistry Energy: Technology Geoscience: Environmental Issues
Published

Researchers design efficient iridium catalyst for hydrogen generation      (via sciencedaily.com) 

Proton exchange membrane water electrolyzers converts surplus electric energy into transportable hydrogen energy as a clean energy solution. However, slow oxygen evolution reaction rates and high loading levels of expensive metal oxide catalysts limit its practical feasibility. Now, researchers have developed a new tantalum oxide-supported iridium catalyst that significantly boosts the oxygen evolution reaction speed. Additionally, it shows high catalytic activity and long-term stability in prolonged single cell operation.