Showing 20 articles starting at article 661
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Engineering: Nanotechnology
Published Breaking through the limits of stretchable semiconductors with molecular brakes that harness light



A research team develops a highly stretchable and high-performance organic polymer semiconductor.
Published Sustainable technique to manufacture chemicals



A newly published study details a novel mechanochemistry method that can produce chemicals using less energy and without the use of solvents that produce toxic waste.
Published Breakthrough: Scientists develop artificial molecules that behave like real ones



Scientists have developed synthetic molecules that resemble real organic molecules. A collaboration of researcher can now simulate the behavior of real molecules by using artificial molecules.
Published A new way to develop drugs without side effects



Have you ever wondered how drugs reach their targets and achieve their function within our bodies? If a drug molecule or a ligand is a message, an inbox is typically a receptor in the cell membrane. One such receptor involved in relaying molecular signals is a G protein-coupled receptor (GPCR). About one-third of existing drugs work by controlling the activation of this protein. Researchers now reveal a new way of activating GPCR by triggering shape changes in the intracellular region of the receptor. This new process can help researchers design drugs with fewer or no side effects.
Published Water molecules define the materials around us



A new paper argues that materials like wood, bacteria, and fungi belong to a newly identified class of matter, 'hydration solids.' The new findings emerged from ongoing research into the strange behavior of spores, dormant bacterial cells.
Published Heart valves made in minutes control blood flow immediately after being implanted into sheep



Researchers have developed a method for cheaply producing heart valves in the span of minutes that are functional immediately after being implanted into sheep. The scientists call their method 'Focused Rotary Jet Spinning,' which they describe as 'a cotton-candy machine with a hair dryer behind it.' Though long-term in vivo studies are needed to test the valves' endurance, they effectively controlled blood flow for an hour in sheep.
Published 'Heat highways' could keep electronics cool



As smart electronic devices become smaller and more powerful, they can generate a lot of heat, leading to slower processing times and sudden shutdowns. Now researchers use an electrospinning approach to produce a new nanocomposite film. In tests, the film dissipated heat four times more efficiently than similar materials, showing that it could one day be used to keep electronics cool.
Published Programmable 3D printed wound dressing could improve treatment for burn, cancer patients



Researchers have created a new type of wound dressing material using advanced polymers. This new dressing could enhance the healing process for burn patients and have potential applications for drug delivery in cancer treatment as well as in the cosmetic industry.
Published More complex than expected: Catalysis under the microscope



Usually, catalytic reactions are analyzed by checking which chemicals go into a chemical reactor and which come out. But as it turns out, in order to properly understand and optimize catalysts, much more information is necessary. Scientists developed methods to watch catalytic reactions with micrometer resolution under the microscope -- and the process is much more complex than previously thought.
Published The problems with coal ash start smaller than anyone thought



Burning coal doesn't only pollute the air. The resulting ash can leach toxic chemicals into the local environments where it's kept. New research shows that the toxicity of various ash stockpiles relies heavily on its nanoscale structures, which vary widely between sources. The results will help researchers predict which coal ash is most environmentally dangerous.
Published Illuminating the molecular ballet in living cells



Researchers have developed one of the world's fastest cameras capable of detecting fluorescence from single molecules.
Published Buckle up! A new class of materials is here



Would you rather run into a brick wall or into a mattress? For most people, the choice is not difficult. A brick wall is stiff and does not absorb shocks or vibrations well; a mattress is soft and is a good shock absorber. Sometimes, in designing materials, both of these properties are needed. Materials should be good at absorbing vibrations, but should be stiff enough to not collapse under pressure. A team of researchers from the UvA Institute of Physics has now found a way to design materials that manage to do both these things.
Published Flat fullerene fragments attractive to electrons



Researchers have gained new insights into the unique chemical properties of spherical molecules composed entirely of carbon atoms, called fullerenes. They did it by making flat fragments of the molecules, which surprisingly retained and even enhanced some key chemical properties.
Published Researchers finds a way to reduce the overheating of semiconductor devices



Scientists have identified a method for improving the thermal conductivity of thin metal films in semiconductors using surface waves for the first time in the world.
Published The 'breath' between atoms -- a new building block for quantum technology



Researchers have discovered they can detect atomic 'breathing,' or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic 'breath' could help researchers encode and transmit quantum information.
Published Lab-grown mini lungs could accelerate the study of respiratory diseases



Researchers have collaborated to refine a cell culture technology platform that grows genetically identical lung buds from human embryonic stem cells.
Published You can make carbon dioxide filters with a 3D printer



Researchers demonstrated that it's possible to make carbon dioxide capture filters using 3D printing.
Published A protein mines, sorts rare earths better than humans, paving way for green tech



Rare earth elements, like neodymium and dysprosium, are a critical component to almost all modern technologies, from smartphones to hard drives, but they are notoriously hard to separate from the Earth's crust and from one another. Scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or 'dimerize,' when it is bound to certain rare earths, but prefer to remain a single unit, or 'monomer,' when bound to others.
Published First X-ray of a single atom



Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.
Published World's fastest electron microscope



Researchers have succeeded in filming the interactions of light and matter in an electron microscope with attosecond time resolution.