Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Engineering: Nanotechnology
Published Accelerating the R&D of wearable tech: Combining collaborative robotics, AI



Engineers have developed a model that combines machine learning and collaborative robotics to accelerate the design of aerogel materials used in wearable heating applications.
Published Some countries could meet their total electricity needs from floating solar panels



Floating solar photovoltaic panels could supply all the electricity needs of some countries, new research has shown. The researchers calculated the daily electrical output for floating photovoltaics (FPV) on nearly 68,000 lakes and reservoirs around the world, using available climate data for each location.
Published Towards next-gen functional materials: direct observation of electron transfer in solids



Nanoscale electron transfer (ET) in solids is fundamental to the development of multifunctional materials. However, ET in solids is not yet clearly understood. Now, researchers achieved a direct observation of solid-state ET through X-ray crystal analysis by fabricating a novel double-walled non-covalent crystalline nanotube, which can absorb electron donor molecules and maintain its crystalline structure during ET. This innovative approach can lead to the design of novel functional materials soon.
Published Shining a light on molecules: L-shaped metamaterials can control light direction



Polarized light waves spin clockwise or counterclockwise as they travel, with one direction behaving differently than the other as it interacts with molecules. This directionality, called chirality or handedness, could provide a way to identify and sort specific molecules for use in biomedicine applications, but researchers have had limited control over the direction of the waves -- until now.
Published Scientists develop 'x-ray vision' technique to see inside crystals



A team of researchers has created a new way to visualize crystals by peering inside their structures, akin to having X-ray vision. Their new technique -- which they aptly named 'Crystal Clear' -- combines the use of transparent particles and microscopes with lasers that allow scientists to see each unit that makes up the crystal and to create dynamic three-dimensional models.
Published Development of revolutionary color-tunable photonic devices



Team develops a flexible and stretchable device capable of omnidirectional color wavelength control.
Published Enhancing nanofibrous acoustic energy harvesters with artificial intelligence



Scientists have employed artificial intelligence techniques to improve the design and production of nanofibers used in wearable nanofiber acoustic energy harvesters (NAEH). These acoustic devices capture sound energy from the environment and convert it into electrical energy, which can then be applied in useful devices, such as hearing aids.
Published Overcoming barriers to heat pump adoption in cold climates and avoiding the 'energy poverty trap'



Converting home heating systems from natural gas furnaces to electric heat pumps is seen as a way to address climate change by reducing greenhouse gas emissions.
Published AI-controlled stations can charge electric cars at a personal price



As more and more people drive electric cars, congestion and queues can occur when many people need to charge at the same time. A new study shows how AI-controlled charging stations, through smart algorithms, can offer electric vehicle users personalized prices, and thus minimize both price and waiting time for customers. But the researchers point to the importance of taking the ethical issues seriously, as there is a risk that the artificial intelligence exploits information from motorists.
Published New method makes hydrogen from solar power and agricultural waste



Engineers have helped design a new method to make hydrogen gas from water using only solar power and agricultural waste such as manure or husks. The method reduces the energy needed to extract hydrogen from water by 600%, creating new opportunities for sustainable, climate-friendly chemical production.
Published Controlling ion transport for a blue energy future



Researchers probed the transit of cations across a nanopore membrane for the generation of osmotic energy. The team controlled the passage of cations across the membrane using a voltage applied to a gate electrode. This control allowed the cation-selective transport to be tuned from essentially zero to complete cation selectivity. The findings are expected to support the application of blue energy solutions for sustainable energy alternatives worldwide.
Published Study is step towards energy-efficient quantum computing in magnets



Researchers have managed to generate propagating spin waves at the nanoscale and discovered a novel pathway to modulate and amplify them. Their discovery could pave the way for the development of dissipation free quantum information technologies. As the spin waves do not involve electric currents these chips will be free from associated losses of energy. The rapidly growing popularity of artificial intelligence comes with an increasing desire for fast and energy efficient computing devices and calls for novel ways to store and process information. The electric currents in conventional devices suffer from losses of energy and subsequent heating of the environment.
Published Wind farms are cheaper than you think -- and could have prevented Fukushima, says global review



Offshore wind could have prevented the Fukushima disaster, according to a review of wind energy.
Published 'The magic of making electricity from metals and air' The vexing carbonate has achieved it!



Team develops a high-energy, high-efficiency all-solid-state Na-air battery platform.
Published Harnessing green energy from plants depends on their circadian rhythms



Plant hydraulics drive the biological process that moves fluids from roots to plant stems and leaves, creating streaming electric potential, or voltage, in the process. A study closely examined the differences in voltage caused by the concentrations of ions, types of ions, and pH of the fluid plants transport, tying the voltage changes to the plant's circadian rhythm that causes adjustments day and night. According to the authors, this consistent, cyclic voltage creation could be harnessed as an energy source.
Published Charge your laptop in a minute or your EV in 10? Supercapacitors can help



Imagine if your dead laptop or phone could charge in a minute or if an electric car could be fully powered in 10 minutes. New research could lead to such advances.
Published Controlling water, transforming greenhouse gases



Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.
Published How a tiny device could lead to big physics discoveries and better lasers



Researchers have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.
Published Renewable grid: Recovering electricity from heat storage hits 44% efficiency



Closing in on the theoretical maximum efficiency, devices for turning heat into electricity are edging closer to being practical for use on the grid, according to new research.
Published Electromechanical material doesn't get 'clamped' down



A new study finds that a class of electromechanically active materials called antiferroelectrics may hold the key to overcoming performance limitations due to clamping in miniaturized electromechanical systems.