Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Energy: Fossil Fuels, Engineering: Nanotechnology
Published Ultra-sensitive lead detector could significantly improve water quality monitoring



Engineers have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous technologies.
Published Direct view of tantalum oxidation that impedes qubit coherence



Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.
Published A sleeker facial recognition technology tested on Michelangelo's David



Many people are familiar with facial recognition systems that unlock smartphones and game systems or allow access to our bank accounts online. But the current technology can require boxy projectors and lenses. Now, researchers report on a sleeker 3D surface imaging system with flatter, simplified optics. In proof-of-concept demonstrations, the new system recognized the face of Michelangelo's David just as well as an existing smartphone system.
Published Unveiling Oxidation-induced Super-elasticity in Metallic Glass Nanotubes



Oxidation can degrade the properties and functionality of metals. However, a research team recently found that severely oxidized metallic glass nanotubes can attain an ultrahigh recoverable elastic strain, outperforming most conventional super-elastic metals. They also discovered the physical mechanisms underpinning this super-elasticity. Their discovery implies that oxidation in low-dimension metallic glass can result in unique properties for applications in sensors, medical devices and other nanodevices.
Published Edge-to-edge assembly technique for 2D nanosheets



A research team develops edge-to-edge assembly technique for 2D nanosheets.
Published Single proton illuminates perovskite nanocrystals-based transmissive thin scintillators



Researchers have developed a transmissive thin scintillator using perovskite nanocrystals, designed for real-time tracking and counting of single protons. The exceptional sensitivity is attributed to biexcitonic radiative emission generated through proton-induced upconversion and impact ionization.
Published Key dynamics of 2D nanomaterials: View to larger-scale production



A team of researchers mapped out how flecks of 2D materials move in liquid -- knowledge that could help scientists assemble macroscopic-scale materials with the same useful properties as their 2D counterparts.
Published Machine learning guides carbon nanotechnology



Carbon nanostructures could become easier to design and synthesize thanks to a machine learning method that predicts how they grow on metal surfaces. The new approach will make it easier to exploit the unique chemical versatility of carbon nanotechnology.
Published New breakthroughs for unlocking the potential of plasmonics



Plasmonics are unique light-matter interactions in the nanoscale regime. Now, a team of researchers has highlighted advances in shadow growth techniques for plasmonic materials, which have the potential to give rise to nanoparticles with diverse shapes and properties. They also introduce a method for large-scale production of nano-rotamers of magnesium with programmable polarization behavior, opening avenues for novel research applications.
Published Small yet mighty: Showcasing precision nanocluster formation with molecular traps



Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.
Published Structural color ink: Printable, non-iridescent and lightweight



A new way of creating color uses the scattering of light of specific wavelengths around tiny, almost perfectly round silicon crystals. This development enables non-fading structural colors that do not depend on the viewing angle and can be printed. The material has a low environmental and biological impact and can be applied extremely thinly, promising significant weight improvements over conventional paints.
Published High-efficiency carbon dioxide electroreduction system reduces our carbon footprint and progressing carbon neutrality goals



Global warming continues to pose a threat to human society and the ecological systems, and carbon dioxide accounts for the largest proportion of the greenhouse gases that dominate climate warming. To combat climate change and move towards the goal of carbon neutrality, researchers have developed a durable, highly selective and energy-efficient carbon dioxide (CO2) electroreduction system that can convert CO2 into ethylene for industrial purposes to provide an effective solution for reducing CO2 emissions.
Published Locusts' sense of smell boosted with custom-made nanoparticles



Scientists have harnessed the power of specially made nanostructures to enhance the neural response in a locust's brain to specific odors and to improve their identification of those odors.
Published Turning glass into a 'transparent' light-energy harvester



Physicists propose a novel way to create photoconductive circuits, where the circuit is directly patterned onto a glass surface with femtosecond laser light. The new technology may one day be useful for harvesting energy, while remaining transparent to light and using a single material.
Published Breakthrough in muscle regeneration: Nanotech scaffolding supports tissue growth



MXene nanoparticle scaffolds have been shown to stimulate muscle growth, making them a promising option to treat muscle loss and damage. Now, researchers explain the molecular mechanisms behind their positive influence on muscle regeneration. This discovery can advance MXene scaffolds, potentially improving muscle reconstruction surgeries and establishing them as a standard medical practice for muscle recovery.
Published Hacking DNA to make next-gen materials



Scientists have developed a universal method for producing a wide variety of designed metallic and semiconductor 3D nanostructures -- the potential base materials for next-generation semiconductor devices, neuromorphic computing, and advanced energy applications. The new method, which uses a 'hacked' form of DNA that instructs molecules to organize themselves into targeted 3D patterns, is the first of its kind to produce robust nanostructures from multiple material classes.
Published Major climate benefits with electric aircraft



Researchers have performed the world's first life cycle assessment (LCA) of an existing, two-seater, all-electric aircraft, with a direct comparison to an equivalent fossil fuel-powered one. According to the study, after just one quarter of the expected lifespan of the electric aircraft, the climate impact is lower than that of the fossil fuel-based aircraft, provided that green electricity is used. The downside, however, is increased mineral resource scarcity.
Published Plumber's nightmare structure in block polymers



Scientists solve a long-standing block copolymer research conundrum through polymer chain end modifications. The study garners substantial academic attention by achieving tangible manifestations of intricate polymer structures that were previously solely theoretical.
Published DNA origami folded into tiny motor



Scientists have created a working nanoscale electomotor. The science team designed a turbine engineered from DNA that is powered by hydrodynamic flow inside a nanopore, a nanometer-sized hole in a membrane of solid-state silicon nitride. The tiny motor could help spark research into future applications such as building molecular factories or even medical probes of molecules inside the bloodstream.
Published Using magnetized neurons to treat Parkinson's disease symptoms



Electrical deep brain stimulation (DBS) is a well-established method for treating disordered movement in Parkinson's disease. However, implanting electrodes in a person's brain is an invasive and imprecise way to stimulate nerve cells. Researchers report a new application for the technique, called magnetogenetics, that uses very small magnets to wirelessly trigger specific, gene-edited nerve cells in the brain. The treatment effectively relieved motor symptoms in mice without damaging surrounding brain tissue.