Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Energy: Fossil Fuels, Engineering: Nanotechnology
Published Researchers create faster and cheaper way to print tiny metal structures with light



Researchers have developed a light-based means of printing nano-sized metal structures that is 480 times faster and 35 times cheaper than the current conventional method. It is a scalable solution that could transform a scientific field long reliant on technologies that are prohibitively expensive and slow. Their method is called superluminescent light projection (SLP).
Published DNA becomes our 'hands' to construct advanced nanoparticle materials



A new paper describes a significant leap forward in assembling polyhedral nanoparticles. The researchers introduce and demonstrate the power of a novel synthetic strategy that expands possibilities in metamaterial design. These are the unusual materials that underpin 'invisibility cloaks' and ultrahigh-speed optical computing systems.
Published The metalens meets the stars



Researchers have developed a 10-centimeter-diameter glass metalens that can image the sun, the moon and distant nebulae with high resolution. It is the first all-glass, large-scale metalens in the visible wavelength that can be mass produced using conventional CMOS fabrication technology.
Published Researchers optimize 3D printing of optically active nanostructures



The shape, size and optical properties of 3-dimensional nanostructures can now be simulated in advance before they are produced directly with high precision on a wide variety of surfaces. Nanoprobes or optical tweezers with sizes in the nanometre range are now within reach.
Published A non-proliferation solution: Using antineutrinos to surveil nuclear reactors



Antineutrinos generated in nuclear fission can be measured to remotely monitor the operation of nuclear reactors and verify that they are not being used to produce nuclear weapons, report scientists. Thanks to a newly developed method, it is now possible to estimate a reactor's operation status, fuel burnup, and fuel composition based entirely on its antineutrino emissions. This technique could contribute massively to nuclear non-proliferation efforts and, in turn, safer nuclear energy.
Published New insight into frictionless surfaces is slippery slope to energy-efficient technology



Scientists have made an insight into superlubricity, where surfaces experience extremely low levels of friction. This could benefit future technologies by reducing energy lost to friction by moving parts.
Published Cryo-microscopy reveals nano-sized copy machine implicated in origin of life



RNA is thought to have sparked the origin of life by self-copying. Researchers have now revealed the atomic structure of an 'RNA copy machine' through cryo-EM. This breakthrough sheds light on a primordial RNA world and fuels advancements in RNA nanotechnology and medicine.
Published Innovative graphene-based implantable technology paves the way for high-precision therapeutic applications



A new study presents an innovative graphene-based neurotechnology with the potential for a transformative impact in neuroscience and medical applications.
Published Using idle trucks to power the grid with clean energy



Researchers are tapping into idled electric vehicles to act as mobile generators and help power overworked and aging electricity grids. After analyzing energy demand on Alberta's power grid during rush hour, the research proposes an innovative way to replenish electrical grids with power generated from fuel cells in trucks.
Published Light-matter interaction: Broken symmetry drives polaritons



An international team of scientists provide an overview of the latest research on light-matter interactions. In a new paper, they provide an overview of the latest research on polaritons, tiny particles that arise when light and material interact in a special way.
Published Bridging light and electrons



Researchers have merged nonlinear optics with electron microscopy, unlocking new capabilities in material studies and the control of electron beams.
Published Catalytic combo converts CO2 to solid carbon nanofibers



Scientists have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure and could successfully lock carbon away to offset or even achieve negative carbon emissions.
Published How black silicon, a prized material used in solar cells, gets its dark, rough edge



Researchers have developed a new theoretical model explaining one way to make black silicon. The new etching model precisely explains how fluorine gas breaks certain bonds in the silicon more often than others, depending on the orientation of the bond at the surface. Black silicon is an important material used in solar cells, light sensors, antibacterial surfaces and many other applications.
Published The first domino falls for redox reactions



Transmitting an effect known as a domino reaction using redox chemistry has been achieved for the first time.
Published Green ammonia could decarbonize 60% of global shipping when offered at just 10 regional fuel ports



A study has found that green ammonia could be used to fulfill the fuel demands of over 60% of global shipping by targeting just the top 10 regional fuel ports. Researchers looked at the production costs of ammonia which are similar to very low sulphur fuels, and concluded that the fuel could be a viable option to help decarbonize international shipping by 2050.
Published New study uses machine learning to bridge the reality gap in quantum devices



A study has used the power of machine learning to overcome a key challenge affecting quantum devices. For the first time, the findings reveal a way to close the 'reality gap': the difference between predicted and observed behavior from quantum devices.
Published Bottled water can contain hundreds of thousands of previously uncounted tiny plastic bits



In recent years, there has been rising concern that tiny particles known as microplastics are showing up basically everywhere on Earth, from polar ice to soil, drinking water and food. Formed when plastics break down into progressively smaller bits, these particles are being consumed by humans and other creatures, with unknown potential health and ecosystem effects. One big focus of research: bottled water, which has been shown to contain tens of thousands of identifiable fragments in each container. Now, using newly refined technology, researchers have entered a whole new plastic world: the poorly known realm of nanoplastics, the spawn of microplastics that have broken down even further. For the first time, they counted and identified these minute particles in bottled water. They found that on average, a liter contained some 240,000 detectable plastic fragments -- 10 to 100 times greater than previous estimates, which were based mainly on larger sizes.
Published Revolutionizing stable and efficient catalysts with Turing structures for hydrogen production



Hydrogen energy has emerged as a promising alternative to fossil fuels, offering a clean and sustainable energy source. However, the development of low-cost and efficient catalysts for hydrogen evolution reaction remains a crucial challenge. Scientists have recently developed a novel strategy to engineer stable and efficient ultrathin nanosheet catalysts by forming Turing structures with multiple nanotwin crystals. This innovative discovery paves the way for enhanced catalyst performance for green hydrogen production.
Published No win-win? Input-efficient technologies might not be so efficient after all



To address natural resource scarcity, pollution, and other harmful effects of climate change, some scientists and policymakers emphasize the adoption of input-efficient technologies like water-saving devices and fuel-saving stoves. Proponents often refer to these input-efficient technologies as 'win-win,' for the benefits to their users and to the environment, and lament their low adoption rates by consumers, in what they call an 'efficiency paradox.' A new paper examines this paradox and finds that the benefits to consumers from input-efficiency adoption are, on average, negative.
Published Springs aboard -- gently feeling the way to grasp the microcosmos



The integration of mechanical memory in the form of springs has for hundreds of years proven to be a key enabling technology for mechanical devices (like clocks), achieving advanced functionality through complex autonomous movements. In our times, the integration of springs in silicon-based microtechnology has opened the world of planar mass-producible mechatronic devices from which we all benefit, via air-bag sensors for example.