Showing 20 articles starting at article 441

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Graphene, Engineering: Nanotechnology

Return to the site home page

Computer Science: General Engineering: Graphene Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Fully recyclable printed electronics ditch toxic chemicals for water      (via sciencedaily.com)     Original source 

Engineers have produced fully recyclable printed electronics that replace the use of chemicals with water in the fabrication process. By bypassing the need for hazardous chemicals, the demonstration points down a path industry could follow to reduce its environmental footprint and human health risks.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Two-dimensional nanoparticles with great potential      (via sciencedaily.com)     Original source 

A research team has discovered how catalysts and many other nanoplatelets can be produced in an environmentally friendly way from readily available materials and in sufficient quantities.

Chemistry: Biochemistry Engineering: Nanotechnology Offbeat: General
Published

Super-sized nanocage could deliver bigger drug cargoes      (via sciencedaily.com)     Original source 

Nanocages are tiny artificial containers that can be used to deliver therapeutics to a target destination in the body. But some drug molecules are like gifts that are too big for a standard-sized nanocage 'box'. Now researchers describe how they have built a super-sized nanocage that could be used to deliver larger drug cargoes. They have built a bigger box.

Chemistry: Inorganic Chemistry Energy: Technology Engineering: Graphene Physics: General
Published

Discovery of ferroelectricity in an elementary substance      (via sciencedaily.com)     Original source 

Researchers have discovered a new single-element ferroelectric material that alters the current understanding of conventional ferroelectric materials and has future applications in data storage devices.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene Geoscience: Geochemistry
Published

Strong ultralight material could aid energy storage, carbon capture      (via sciencedaily.com)     Original source 

Materials scientists showed that fine-tuning interlayer interactions in a class of 2D polymers can determine the materials' loss or retention of desirable mechanical properties in multilayer or bulk form.

Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: General Engineering: Graphene
Published

Is it COVID-19 or the flu? New sensor could tell you in 10 seconds      (via sciencedaily.com) 

Have a cough, sore throat and congestion? Any number of respiratory viruses could be responsible. Today, scientists report using a single-atom-thick nanomaterial to build a device that can simultaneously detect the presence of the viruses that cause COVID-19 and the flu -- at much lower levels and much more quickly than conventional tests for either.

Energy: Technology Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Highly charged ions melt nano gold nuggets      (via sciencedaily.com)     Original source 

Shooting ions is very different from shooting a gun: By firing highly charged ions onto tiny gold structures, these structures can be modified in technologically interesting ways. Surprisingly, the key is not the force of impact, but the electric charge of the projectiles.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Biomolecules: Trying nanometer measurement for size      (via sciencedaily.com)     Original source 

As part of a comparative international study, researchers have successfully tested and validated a method of investigating dynamic protein structures.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Engineering: Nanotechnology
Published

Probe where the protons go to develop better fuel cells      (via sciencedaily.com)     Original source 

Researchers have uncovered the chemical inner-workings of an electrolyte they developed for a new generation of solid oxide fuel cells. To uncover the location of the proton-introduction reaction, the team studied extensively the hydration reaction of their scandium-substituted barium zirconate perovskite through a combination of synchrotron radiation analysis, large-scale simulations, machine learning, and thermogravimetric analysis. The new data has the potential to accelerate the development of more efficient fuel cells.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nanophysics: The right twist      (via sciencedaily.com) 

Stacked layers of ultrathin semiconductor materials feature phenomena that can be exploited for novel applications. Physicists have studied effects that emerge by giving two layers a slight twist.

Engineering: Graphene Physics: General
Published

Graphene grows -- and we can see it      (via sciencedaily.com) 

Graphene is the strongest of all materials. On top of that, it is exceptionally good at conducting heat and electrical currents, making it one of the most special and versatile materials we know. For all these reasons, the discovery of graphene was awarded the Nobel Prize in Physics in 2010. Yet, many properties of the material and its cousins are still poorly understood -- for the simple reason that the atoms they are made up of are very difficult to observe.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Physics
Published

Semiconductor lattice marries electrons and magnetic moments      (via sciencedaily.com) 

A model system created by stacking a pair of monolayer semiconductors is giving physicists a simpler way to study confounding quantum behavior, from heavy fermions to exotic quantum phase transitions.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New simulation reveals secrets of exotic form of electrons called polarons      (via sciencedaily.com) 

Conditions mapped for the first time of polaron characteristics in 2D materials. TACC's Frontera supercomputer generated quantum mechanical calculations on hexagonal boron nitride system of 30,000 atoms.

Engineering: Nanotechnology Space: Exploration Space: General
Published

Ultra-lightweight multifunctional space skin created to withstand extreme conditions in space      (via sciencedaily.com) 

A new nano-barrier coating could help protect ultra-lightweight carbon composite materials from extreme conditions in space, according to a new study.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Engineering: Nanotechnology
Published

Batteries: Passivation layer mystery solved      (via sciencedaily.com) 

In our daily lives, lithium-ion batteries have become indispensable. They function only because of a passivation layer that forms during their initial cycle. As researchers found out via simulations, this solid electrolyte interphase develops not directly at the electrode but aggregates in the solution. Their findings allow the optimization of the performance and lifetime of future batteries.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

'Inkable' nanomaterial promises big benefits for bendable electronics      (via sciencedaily.com) 

An international team of scientists is developing an inkable nanomaterial that they say could one day become a spray-on electronic component for ultra-thin, lightweight and bendable displays and devices.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

'Fishing' for biomarkers      (via sciencedaily.com) 

Researchers have devised a tiny, nano-sized sensor capable of detecting protein biomarkers in a sample at single-molecule precision. Fittingly coined as 'hook and bait,' a tiny protein binder fuses to a small hole created in the membrane of a cell -- known as a nanopore ­-- which allows ionic solution to flow through it. When the sensor recognizes a targeted molecule, the ionic flow changes. This change in flow serves as the signal from the sensor that the biomarker has been found.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Nanotechnology could treat lymphedema      (via sciencedaily.com) 

When lymphatic vessels fail, typically their ability to pump out the fluid is compromised. Researchers have now developed a new treatment using nanoparticles that can repair lymphatic vessel pumping. Traditionally, researchers in the field have tried to regrow lymphatic vessels, but repairing the pumping action is a unique approach.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Graphene Engineering: Nanotechnology Engineering: Robotics Research
Published

Mind-control robots a reality?      (via sciencedaily.com) 

Researchers have developed biosensor technology that will allow you to operate devices, such as robots and machines, solely through thought control.