Showing 20 articles starting at article 501

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Graphene, Engineering: Nanotechnology

Return to the site home page

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Technology Engineering: Nanotechnology Geoscience: Environmental Issues Physics: Optics
Published

Passive radiative cooling can now be controlled electrically      (via sciencedaily.com) 

Energy-efficient ways of cooling buildings and vehicles will be required in a changing climate. Researchers have now shown that electrical tuning of passive radiative cooling can be used to control temperatures of a material at ambient temperatures and air pressure.

Engineering: Graphene Space: Exploration
Published

New research computes first step toward predicting lifespan of electric space propulsion systems      (via sciencedaily.com)     Original source 

Electric space propulsion systems use energized atoms to generate thrust. The high-speed beams of ions bump against the graphite surfaces of the thruster, eroding them with each hit, and are the systems' primary lifetime-limiting factor. Researchers used data from low-pressure chamber experiments and large-scale computations to develop a model to better understand the effects of ion erosion on carbon surfaces -- the first step in predicting its failure.

Engineering: Nanotechnology
Published

Smart stitches could reduce infection and simplify post op monitoring      (via sciencedaily.com) 

A new antimicrobial suture material that glows in medical imaging could provide a promising alternative for mesh implants and internal stitches.

Engineering: Nanotechnology
Published

Transforming the way cancer vaccines are designed and made      (via sciencedaily.com) 

A new way to significantly increase the potency of almost any vaccine has been developed. The scientists used chemistry and nanotechnology to change the structural location of adjuvants and antigens on and within a nanoscale vaccine, greatly increasing vaccine performance in seven different types of cancer. The architecture is critical to vaccine effectiveness, the study shows.

Engineering: Graphene
Published

Novel device enables high-resolution observation of liquid phase dynamic processes at nanoscale      (via sciencedaily.com) 

In situ observation and recording of important liquid-phase electrochemical reactions in energy devices is crucial for the advancement of energy science. A research team has recently developed a novel, tiny device to hold liquid specimens for transmission electron microscopy (TEM) observation, opening the door to directly visualizing and recording complex electrochemical reactions at nanoscale in real-time at high resolution. The research team believes that this innovative method will shed light on strategies for fabricating a powerful research tool for uncovering the mysteries of electrochemical processes in the future.

Biology: Developmental Engineering: Nanotechnology Offbeat: Plants and Animals
Published

This groundbreaking biomaterial heals tissues from the inside out      (via sciencedaily.com) 

A new biomaterial that can be injected intravenously, reduces inflammation in tissue and promotes cell and tissue repair. The biomaterial was tested and proven effective in treating tissue damage caused by heart attacks in both rodent and large animal models. Researchers also provided proof of concept in a rodent model that the biomaterial could be beneficial to patients with traumatic brain injury and pulmonary arterial hypertension.

Engineering: Graphene
Published

Superconductivity switches on and off in 'magic-angle' graphene      (via sciencedaily.com) 

Physicists have found a new way to switch superconductivity on and off in magic-angle graphene. The discovery could lead to ultrafast, energy-efficient superconducting transistors for 'neuromorphic' electronics that operate similarly to the rapid on/off firing of neurons in the human brain.

Chemistry: Thermodynamics Engineering: Graphene
Published

Researchers can 'see' crystals perform their dance moves      (via sciencedaily.com) 

Researchers already knew the atoms in perovskites react favorably to light. Now they've seen precisely how the atoms move when the 2D materials are excited with light. Their study details the first direct measurement of structural dynamics under light-induced excitation in 2D perovskites.

Energy: Technology Engineering: Nanotechnology
Published

Researchers demo new type of carbon nanotube yarn that harvests mechanical energy      (via sciencedaily.com) 

Nanotechnology researchers have made novel carbon nanotube yarns that convert mechanical movement into electricity more effectively than other material-based energy harvesters.

Computer Science: Quantum Computers Engineering: Graphene Offbeat: Computers and Math Physics: Quantum Computing
Published

Scientists observe 'quasiparticles' in classical systems      (via sciencedaily.com) 

Quasiparticles -- long-lived particle-like excitations -- are a cornerstone of quantum physics, with famous examples such as Cooper pairs in superconductivity and, recently, Dirac quasiparticles in graphene. Now, researchers have discovered quasiparticles in a classical system at room temperature: a two-dimensional crystal of particles driven by viscous flow in a microfluidic channel. Coupled by hydrodynamic forces, the particles form stable pairs -- a first example of classical quasiparticles, revealing deep links between quantum and classical dissipative systems.

Engineering: Graphene
Published

Physicists solve mystery of two-dimensional quasicrystal formation from metal oxides      (via sciencedaily.com) 

The structure of two-dimensional titanium oxide brakes-up at high temperatures by adding barium; instead of regular hexagons, rings of four, seven and ten atoms are created that order aperiodically. A team has now solved the riddle of two-dimensional quasicrystal formation from metal oxides.

Energy: Batteries Energy: Technology Engineering: Graphene
Published

Recyclable mobile phone batteries a step closer with rust-busting invention      (via sciencedaily.com) 

Mobile phone batteries with a lifetime up to three times longer than today's technology could be a reality thanks to a recent innovation.

Computer Science: General Energy: Technology Engineering: Nanotechnology
Published

Spin transport measured through molecular films now long enough to develop spintronic devices      (via sciencedaily.com)     Original source 

A research group has succeeded in measuring spin transport in a thin film of specific molecules -- a material well-known in organic light emitting diodes -- at room temperature. They found that this thin molecular film has a spin diffusion length of approximately 62 nm, a length that could have practical applications in developing spintronics technology. In addition, while electricity has been used to control spin transport in the past, the thin molecular film used in this study is photoconductive, allowing spin transport control using visible light.

Engineering: Nanotechnology
Published

Incorporation of water molecules into layered materials impacts ion storage capability      (via sciencedaily.com) 

Researchers have experimentally detected the structural change of hydration water confined in the tiny nano-scale pores of layered materials such as clays. Their findings potentially open the door to new options for ion separation and energy storage.

Biology: Microbiology Engineering: Nanotechnology
Published

New nanoparticles deliver therapy brain-wide, edit Alzheimer's gene in mice      (via sciencedaily.com) 

Researchers describe a new family of nano-scale capsules made of silica that can carry genome-editing tools into many organs around the body and then harmlessly dissolve.

Engineering: Graphene
Published

Electronic nose: Sensing the odor molecules on graphene surface layered with self-assembled peptides      (via sciencedaily.com) 

Graphene-based olfactory sensors that can detect odor molecules based on the design of peptide sequences were recently demonstrated. The findings indicated that graphene field-effect transistors (GFETs) functionalized with designable peptides can be used to develop electronic devices that mimic olfactory receptors and emulate the sense of smell by selectively detecting odor molecules.

Engineering: Nanotechnology
Published

Nanoparticles make it easier to turn light into solvated electrons      (via sciencedaily.com) 

Solutions containing solvated electrons are inherently clean chemical reactants, and they could become easier and cheaper to make now that chemists have uncovered the long-sought mechanism of a light-driven process that creates them.

Engineering: Nanotechnology
Published

Engineers grow 'perfect' atom-thin materials on industrial silicon wafers      (via sciencedaily.com) 

Engineers fabricated 2D materials that could lead to next-generation transistors and electronic films.

Energy: Nuclear Engineering: Nanotechnology
Published

Researchers gain deeper understanding of mechanism behind superconductors      (via sciencedaily.com) 

Physicists have once again gained a deeper understanding of the mechanism behind superconductors. This brings researchers one step closer to their goal of developing the foundations for a theory for superconductors that would allow current to flow without resistance and without energy loss. The researchers found that in superconducting copper-oxygen bonds, called cuprates, there must be a very specific charge distribution between the copper and the oxygen, even under pressure.

Engineering: Nanotechnology
Published

Preventing vehicle crashes by learning from insects      (via sciencedaily.com) 

Despite only about 25% of car travel happening after dark, almost half of fatal accidents occur at night. As our vehicles become more advanced and even autonomous, the ways of detecting and avoiding these collisions must evolve too. Current systems are often complicated, resource-intensive or work poorly in the dark. But now, researchers have designed a simple, power-saving collision detector inspired by the way insects avoid bumping into one another.