Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General
Published

Innovative study unveils a new path in green chemistry      (via sciencedaily.com)     Original source 

Researchers have introduced a new advancement in the fight against climate change. Their study showcases a novel method for understanding the mechanisms of carbon dioxide re-utilization leading to fuels and chemicals. This work paves the road for the further optimization of this catalytic process driven by renewable electricity.

Engineering: Nanotechnology
Published

Precise stirring conditions key to optimizing nanostructure synthesis      (via sciencedaily.com)     Original source 

Stirring allows for homogenization and efficient gas exchange -- this fact has been known for decades. Controlling the stirring rate during the nanocluster synthesis is pivotal in achieving nanostructures with well-defined sizes, structures, optical properties, and stability.

Chemistry: Biochemistry Chemistry: General Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

Artificial compound eye to revolutionize robotic vision at lower cost but higher sensitivity      (via sciencedaily.com)     Original source 

A research team has recently developed a novel artificial compound eye system that is not only more cost-effective, but demonstrates a sensitivity at least twice that of existing market products in small areas. The system promises to revolutionize robotic vision, enhance robots' abilities in navigation, perception and decision-making, while promoting commercial application and further development in human-robot collaboration.

Computer Science: Quantum Computers Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

X-ray imagery of vibrating diamond opens avenues for quantum sensing      (via sciencedaily.com)     Original source 

Scientists at three research institutions capture the pulsing motion of atoms in diamond, uncovering the relationship between the diamond's strain and the behavior of the quantum information hosted within.

Engineering: Robotics Research
Published

'Amphibious' sensors make new, waterproof technologies possible      (via sciencedaily.com)     Original source 

Researchers have demonstrated a technique for creating sensors that can function both in air and underwater. The approach paves the way for 'amphibious' sensors with applications ranging from wildlife monitoring to biomedical applications.

Chemistry: Biochemistry Engineering: Nanotechnology Offbeat: General
Published

Soft gold enables connections between nerves and electronics      (via sciencedaily.com)     Original source 

Gold does not readily lend itself to being turned into long, thin threads. But researchers have now managed to create gold nanowires and develop soft electrodes that can be connected to the nervous system. The electrodes are soft as nerves, stretchable and electrically conductive, and are projected to last for a long time in the body.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Concept for efficiency-enhanced noble-metal catalysts      (via sciencedaily.com)     Original source 

The production of more than 90 percent of all chemical products we use in our everyday lives relies on catalysts. Catalysts speed up chemical reactions, can reduce the energy required for these processes, and in some cases, reactions would not be possible at all without catalysts. Researchers developed a concept that increases the stability of noble-metal catalysts and requires less noble metal for their production.

Energy: Technology Engineering: Nanotechnology Physics: General
Published

Novel ultrafast electron microscopy technique advances understanding of processes applicable to brain-like computing      (via sciencedaily.com)     Original source 

A team developed a new microscopy technique that uses electrical pulses to track the nanosecond dynamics within a material that is known to form charge density waves. Controlling these waves may lead to faster and more energy-efficient electronics.

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Stacked up against the rest      (via sciencedaily.com)     Original source 

Scientists have hypothesized that moir excitons -- electron-hole pairs confined in moir interference fringes which overlap with slightly offset patterns -- may function as qubits in next-generation nano-semiconductors. However, due to diffraction limits, it has not been possible to focus light enough in measurements, causing optical interference from many moir excitons. To solve this, researchers have developed a new method of reducing these moir excitons to measure the quantum coherence time and realize quantum functionality.

Chemistry: General Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Sustainable and reversible 3D printing method uses minimal ingredients and steps      (via sciencedaily.com)     Original source 

A new 3D printing method developed by engineers is so simple that it uses a polymer ink and salt water solution to create solid structures. The work has the potential to make materials manufacturing more sustainable and environmentally friendly.

Engineering: Robotics Research Environmental: General Geoscience: Earthquakes Geoscience: Environmental Issues Geoscience: Geography
Published

Towards smart cities: Predicting soil liquefaction risk using artificial intelligence      (via sciencedaily.com)     Original source 

Soil liquefaction that results in infrastructure damage has long been a point of contention for urban planners and engineers. Accurately predicting the soil liquefaction risk of a region could help overcome this challenge. Accordingly, researchers applied artificial intelligence to generate soil liquefaction risk maps, superseding already published risk maps.

Computer Science: General Energy: Technology Engineering: Nanotechnology
Published

Pursuing the middle path to scientific discovery      (via sciencedaily.com)     Original source 

Scientists have made significant strides in understanding the properties of a ferroelectric material under an electric field. This breakthrough holds potential for advances in computer memory, lasers and sensors for ultraprecise measurements.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Researchers identify unique phenomenon in Kagome metal      (via sciencedaily.com)     Original source 

A new study focuses on how a particular Kagome metal interacts with light to generate what are known as plasmon polaritons -- nanoscale-level linked waves of electrons and electromagnetic fields in a material, typically caused by light or other electromagnetic waves.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Shape-shifting 'transformer bots' inspired by origami      (via sciencedaily.com)     Original source 

Inspired by the paper-folding art of origami, engineers have discovered a way to make a single plastic cubed structure transform into more than 1,000 configurations using only three active motors.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Hair follicle models from the 3D printer      (via sciencedaily.com)     Original source 

Hair follicle infections are often difficult to treat because bacteria settle in the gap between hair and skin, where it is difficult for active substances to reach them. In order to investigate this scenario more closely in the laboratory, researchers have now developed a model with human hair follicles embedded in a matrix produced using 3D printing. In the future, this model can be used to test the effectiveness of new drug candidates against corresponding pathogens directly on human follicles.

Energy: Batteries Engineering: Graphene Engineering: Nanotechnology
Published

Scientists work to build 'wind-up' sensors      (via sciencedaily.com)     Original source 

An international team of scientists has shown that twisted carbon nanotubes can store three times more energy per unit mass than advanced lithium-ion batteries. The finding may advance carbon nanotubes as a promising solution for storing energy in devices that need to be lightweight, compact, and safe, such as medical implants and sensors.

Biology: Biochemistry Chemistry: Biochemistry Chemistry: General Energy: Alternative Fuels Engineering: Robotics Research
Published

New understanding of fly behavior has potential application in robotics, public safety      (via sciencedaily.com)     Original source 

Scientists have identified an automatic behavior in flies that helps them assess wind conditions -- its presence and direction -- before deploying a strategy to follow a scent to its source. The fact that they can do this is surprising -- can you tell if there's a gentle breeze if you stick your head out of a moving car? Flies aren't just reacting to an odor with a preprogrammed response: they are responding in context-appropriate manner. This knowledge potentially could be applied to train more sophisticated algorithms for scent-detecting drones to find the source of chemical leaks.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Researchers explore the interplay between high-affinity DNA and carbon nanotubes      (via sciencedaily.com)     Original source 

Single-walled carbon nanotubes (SWCNTs) hold promise for biomedicine and nanoelectronics, yet the functionalization with single-stranded DNA (ssDNA) remains a challenge. Researchers using high-affinity ssDNA sequences identified through high-throughput selection. They demonstrated the effectivity and stability of these constructs using molecular dynamics simulations. Machine-learning models were used to accurately predict patterns that govern ssDNA-SWCNT binding affinity. These findings provide valuable insights into the interactions between ssDNA and SWCNTs.